ECED 3300 Electromagnetic Fields
 Final Examination

Place: Sexton Gymnasium
Instructor: Sergey A. Ponomarenko
Date and Time: Monday, December 11, 2017, 12 to 15 pm.
Closed Books: Formula sheets are provided; absolutely no supplemental material and no calculators are allowed.
Hint: Make sure to justify all your answers to get full credit.

Problem 1 (15pts)

Given a time-dependent electric field, $\mathbf{E}=A\left(y \mathbf{a}_{x}-x \mathbf{a}_{y}\right) \cos \omega t$, V / m, where A is a known constant, find the time rate of change of the magnetic flux density everywhere in space.

Problem 2 (20pts)

Two concentric spheres of radii a and $b,(b>a)$ are filled with a dielectric material such that the dielectric permittivity of the system is given by

$$
\epsilon= \begin{cases}\epsilon_{1}, & r<a \\ \epsilon_{2}, & a<r<b\end{cases}
$$

The spheres are situated in free space, and a point charge Q is placed at the center of the spheres as is indicated in the figure.
a) Determine the electric field everywhere;
b) Find the amount of electrostatic energy stored in the shaded area;
c) Find the volume polarization charge density everywhere.
d) Determine the amount of work required to move a point charge q to any point on the surface of the outer sphere, $r=b$, from far away.

Fig. 1

FIG. 1: Illustration to Problem 2.

CONTINUED ON NEXT PAGE

Problem 3 (20pts)

Given the vector field \mathbf{F} such that

$$
\mathbf{F}=\frac{e^{-\rho^{2}}}{\rho} \cos \phi \mathbf{a}_{\rho}+2 \rho e^{-\rho^{2}} \sin \phi \mathbf{a}_{\phi}
$$

a) Determine whether \mathbf{F} can represent a magnetic flux density.
b) Find the flux of \mathbf{F} through a cylinder of height H and radius R, centered at the origin.

Problem 4 (15pts)

Given the magnetic field,

$$
\mathbf{H}(\mathbf{r})=\frac{2 \cos \theta}{r} \mathbf{a}_{r}-\frac{\sin \theta}{r} \mathbf{a}_{\theta}, \quad \mathrm{A} / \mathrm{m}
$$

a) determine the current density generating this magnetic field;
b) find the time rate of change of the charge density at any point in space;
c) determine the total current through a sphere of radius R centered at the origin.

Problem 5 (30pts)

The upper half-space $z>0$ is a dielectric medium with the permittivity ϵ. The lower half-space $z<0$ is empty and is free of charge. The volume charge density in the dielectric is given by the expression

$$
\rho_{v}(z)=\rho_{0} e^{-z / a}
$$

where ρ_{0} and a are known constants.
(a) Determine the electrostatic potential in the dielectric.
(b) Find the electric field everywhere.

Hint: You may express your answer in terms of ϵ_{0}.

