Solutions to Final 2017

Problem 1

According to Maxwell's equation,

$$
\partial_{t} \mathbf{B}=-\nabla \times \mathbf{E}=-\left|\begin{array}{ccc}
\mathbf{a}_{x} & \mathbf{a}_{y} & \mathbf{a}_{z} \\
\partial_{x} & \partial_{y} & \partial_{z} \\
A y \cos \omega t-A x \cos \omega t & 0
\end{array}\right|=2 A \cos \omega t \mathbf{a}_{z}
$$

Problem 2

a) Placing the origin of our spherical coordinates at the position of the charge Q, we infer from Gauss's law that

$$
D \times 4 \pi r^{2}=Q
$$

implying that the electric flux density anywhere is given by

$$
\mathbf{D}=\frac{Q}{4 \pi r^{2}} \mathbf{a}_{r}
$$

Thus, the electric field,

$$
\mathbf{E}=\left\{\begin{array}{lc}
\frac{Q}{4 \pi \epsilon_{1} r^{2}} \mathbf{a}_{r}, & r<a \\
\frac{Q}{4 \pi \epsilon_{2} r^{2}} \mathbf{a}_{r}, & a<r<b \\
\frac{Q}{4 \pi \epsilon_{0} r^{2}} \mathbf{a}_{r}, & r>b
\end{array}\right.
$$

b) The amount of energy stored in the shaded region is

$$
W=\frac{1}{2} \epsilon_{2} \int d v E^{2}=\frac{1}{2} \epsilon_{2} \underbrace{\int_{0}^{2 \pi} d \phi \int_{0}^{\pi} d \theta \sin \theta}_{=4 \pi} \int_{a}^{b} d r r^{2} \frac{Q^{2}}{16 \pi^{2} \epsilon_{2}^{2} 4^{4}}=\frac{Q^{2}}{8 \pi \epsilon_{2}}\left(\frac{1}{a}-\frac{1}{b}\right) .
$$

c) It then follows at once that $\mathbf{P}=\mathbf{D}-\epsilon_{0} \mathbf{E}$. Thus,

$$
\mathbf{P}=\left\{\begin{array}{cc}
\frac{Q}{4 \pi r^{2}}\left(1-\epsilon_{0} / \epsilon_{1}\right) \mathbf{a}_{r}, & r<a ; \\
\frac{Q}{4 \pi r^{2}}\left(1-\epsilon_{0} / \epsilon_{2}\right) \mathbf{a}_{r}, & a<r<b ; \\
0, & r>b
\end{array}\right.
$$

By definition,

$$
\rho_{p v}=-\nabla \cdot \mathbf{P}=-\frac{1}{r^{2}} \partial_{r}\left(r^{2} P_{r}\right)=-\frac{1}{r^{2}} \partial_{r}\left[r^{2} \frac{Q}{4 \pi r^{2}}\left(1-\epsilon_{0} / \epsilon_{j}\right)\right]=0
$$

where $j=1,2$. The volume polarization charge density in free space is, of course, zero because $P=0$ there. Thus $\rho_{p v}=0$ everywhere.
d) The field outside the concentric spheres is generated by the only net charge in the problem, the charge Q at the origin. By definition,

$$
W=q\left(V_{f}-V_{i}\right)
$$

where $V_{i}=0$, the potential far away from the point charge at the center and $V_{f}=\frac{Q}{4 \pi \epsilon_{0} b}$ is a potential at the surface of the outer sphere. Thus,

$$
W=\frac{Q q}{4 \pi \epsilon_{0} b} .
$$

Problem 3

a) The magnetic flux density must be solenoidal, $\nabla \cdot \mathbf{B}=0$ (no magnetic charges). A simple check confirms that

$$
\nabla \cdot \mathbf{F}=\frac{1}{\rho} \partial_{\rho}\left(\rho \frac{1}{\rho} e^{-\rho^{2}}\right) \cos \phi+2 \rho e^{-\rho^{2}} \frac{1}{\rho} \partial_{\phi}(\sin \phi)=-2 e^{-\rho^{2}} \cos \phi+2 e^{-\rho^{2}} \cos \phi=0
$$

b) The flux is equal to zero because the field is solenoidal; in other words, using Gauss's theorem

$$
\oint d \mathbf{S} \cdot \mathbf{F}=\int d v \nabla \cdot \mathbf{F}=0 .
$$

Alternatively, the flux through the top and bottom cylinder surfaces is zero because $\mathbf{a}_{n}= \pm \mathbf{a}_{z}$ and $\mathbf{a}_{z} \cdot \mathbf{a}_{\rho}=\mathbf{a}_{z} \cdot \mathbf{a}_{\phi}=0$. The flux through the walls with $d \mathbf{S}=\mathbf{a}_{\rho} d z R d \phi$ is given by

$$
\oint d \mathbf{S} \cdot \mathbf{F}=\int_{0}^{H} d z \frac{1}{R} e^{-R^{2}} \underbrace{\int_{0}^{2 \pi} d \phi \cos \phi}_{=0}=0
$$

Problem 4

a) Ampère's law implies that

$$
\mathbf{J}=\nabla \times \mathbf{H}=\frac{1}{r^{2} \sin \theta}\left|\begin{array}{ccc}
\mathbf{a}_{r} & r \mathbf{a}_{\theta} & r \sin \theta \mathbf{a}_{\phi} \\
\partial_{r} & \partial_{\theta} & \partial_{\phi} \\
2 \cos \theta / r & -\sin \theta & 0
\end{array}\right|=\frac{2 \sin \theta}{r^{2}} \mathbf{a}_{\phi}
$$

b) The continuity equation states that

$$
\partial_{t} \rho_{v}=-\nabla \cdot \mathbf{J}=-\frac{1}{r^{2} \sin \theta} \partial_{\phi} J_{\phi}=-\frac{1}{r^{2} \sin \theta} \partial_{\phi}\left(\frac{2 \sin \theta}{r^{2}}\right)=0 .
$$

c) By definition,

$$
I=\int d \mathbf{S} \cdot \mathbf{J}=0
$$

because $d \mathbf{S}=\mathbf{a}_{r} R d \theta R \sin \theta d \phi$ and $d \mathbf{S} \cdot \mathbf{J}=0$ since $\mathbf{a}_{r} \cdot \mathbf{a}_{\phi}=0$.

Problem 5

a) Assume from the charge distribution symmetry that $V(x, y, z)=V(z)$. The potential distribution then follows from Poisson's equation written in the Cartesian coordinates as

$$
\frac{d^{2} V}{d z^{2}}=-\left(\rho_{0} / \epsilon\right) e^{-z / a}
$$

Integrating twice, yields

$$
V(z)=C_{2}+C_{1} z-a^{2}\left(\rho_{0} / \epsilon\right) e^{-z / a} .
$$

Imposing the boundary conditions, $V \rightarrow 0$ as $z \rightarrow \infty$ implies $C_{1}=C_{2}=0$. Thus,

$$
V(z)=-a^{2}\left(\rho_{0} / \epsilon\right) e^{-z / a}
$$

b) The electric field is $\mathbf{E}=-\nabla V$. Hence,

$$
\mathbf{E}=-\frac{\partial V}{\partial z} \mathbf{a}_{z}=-a\left(\rho_{0} / \epsilon\right) e^{-z / a} \mathbf{a}_{z}
$$

in the dielectric. In free space, $z<0$, the Laplace equation reads,

$$
\frac{d^{2} V}{d z^{2}}=0
$$

immediately implying the linear solution,

$$
V(z)=A z+B
$$

where A and B are unknown constants. The electric field in the lower half-space is uniform

$$
\mathbf{E}=-\nabla V=-A \mathbf{a}_{z}
$$

To determine its magnitude A, we stipulate that the normal component of \mathbf{D} be continuous across the interface $z=0$:

$$
\left.\epsilon \mathbf{E}_{>}\right|_{z=0} \cdot \mathbf{a}_{z}=\left.\epsilon_{0} \mathbf{E}_{<}\right|_{z=0} \cdot \mathbf{a}_{z} \Longrightarrow a \rho_{0}=\epsilon_{0} A
$$

implying that

$$
A=a \rho_{0} / \epsilon_{0}
$$

The final answer is then

$$
\mathbf{E}=\left\{\begin{array}{cc}
-a\left(\rho_{0} / \epsilon\right) e^{-z / a} \mathbf{a}_{z}, & z>0 \\
-a\left(\rho_{0} / \epsilon_{0}\right) \mathbf{a}_{z}, & z<0
\end{array}\right.
$$

