Solutions to Final 2018
Problem 1

The system is equivalent to two parallel-plate capacitors of capacitances C; = €A/h and Cy =

€0A/(d — h) connected in a series. Hence,
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Problem 2
According to Faraday’s law,
0
Cdt’
The magnetic flux,
o — /dS B,  dS = a.pdédp:

and the magnetic flux density can be expressed in the cylindrical coordinates as
B = a,Bypcos ¢ cos wt.
It follows that
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Finally,
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Problem 3
a) By definition,
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By the same token,
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b) By definition in free space, B = poH. Further,
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Thus, inside a sphere of radius a,
BB = Bj(cos® +sin’f) = B3.
It follows that
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Problem 4

We employ Bio-Savart’s law,

Idl xR
dHp = ———.
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1) Segments “1” and “3” are straight, implying that /dl = Idxa, and R = +xa,. It follows at
once that /dl x R = 0 and these segments don’t contribute to the field at P.

2) On segment “2”, we have, Idl = —Ibdgay,, and R = —ba,; the minus signs come from the fact
that the positive direction of a4 is counterclockwise and R is a distance from a current element to
the observation point. Putting it all together,

Ibdpay x ba,
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Observing that ay x a, = —a,, we obtain,
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Problem 5

a) In the Poisson equation, as the charge density depends only on z, so does the potential, V' =
V(z). Hence,
d*V
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Consider the upper half-space first, z > 0, € = e~. We have

2V,
dz?

= —(po/€>)e™"".

Integrating twice, we obtain,

V><Z) = CIZ + CQ — 50 67,{'2.
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First, the potential has to be finite at any z, implying that C'; = 0. Second, far away, z — 400, the

potential tends to a zero reference potential resulting in Cy = 0. Thus,
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By the same token,
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b) By definition,
E=-VV =-a,dV/dz.

It follows that
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¢) It follows from the boundary conditions that

Ps = Ap21 ° (Dl - D2)|z:0-

In our case, a,9 = a,, Dy = e.E_ = (py/k)e"*a,, and D; = e, E. = —(po/k)e *a,, implying
that

ps = —2po/k.



