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Chapter 1

Vector Algebra: A Brief Review

1.1 Scalars and vectors
In general, there are two kinds of objects one deals with in vector algebra: scalars
and vectors. While the former have only magnitude, the latter are characterized by
their magnitudes and directions. Physical quantities such as mass, density, temper-
ature, and charge, say, are scalars, whereas a velocity, or a force is a vector. A unit
vector–which has a unit magnitude–can always be formed by dividing a vector by its
magnitude. For instance,

a =
A
|A|

,

is a unit vector directed along A. A vector A can be geometrically represented as an
arrow; the length of the arrow equals the magnitude of A, and the arrow points into the
direction of A as is seen in Fig. 1.1.

A


Figure 1.1: Geometric representation of a vector A.

Another way to represent a vector is through its three–in a three-dimensional space,
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of course–components in a suitably chosen coordinate system. In this course, we will
be exclusively working with the Cartesian coordinates such that any vector A can be
represented in terms of its three coordinates (Ax, Ay, Az), or alternatively,

A = Axax +Ayay +Azaz .

Here ax,ay and az are three mutually orthogonal unit vectors, (see Fig.1.2). The vector
magnitude can be determined using the Pythagoras’s theorem,

|A| =
√
A2

x +A2
y +A2

z .

A


zâ

yâ
xâ o

x

y

z

Figure 1.2: Decomposition of a vector A in the Cartesian coordinate system.

1.2 Vector addition and subtraction
Two vectors A and B can be added and/or subtracted component by component,

A + B = (Ax +Bx)ax + (Ay +By)ay + (Az +Bz)az.

Geometrically, the vector addition can be represented using either a parallelogram rule
or a head-to-tail rule as depicted in Fig. 1.3. The subtraction is inverse to addition. As
follows from the definition, the vector addition/ subtraction obeys commutativity and
associativity properties, implying that

A + B = B + A, (commutativity),

and
A + (B + C) = (A + B) + C, (associativity).
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B
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

(a)
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

B


A


(b)

Figure 1.3: Illustrating vector addition: (a) parallelogram rule and (b) head-to-tail rule.

Also a vector can be multiplied by a scalar, implying each vector component is
multiplied by a scalar,

kA = kAxax + kAyay + kAzaz.

A product of a scalar and a vector sum/difference obeys the distributive law,

k(A + B) = kA + kB.

1.3 Vector multiplication
There are two kinds of vector products: dot or scalar product and cross or vector prod-
uct.
Definition. The dot product of two vectors A and B, written as A ·B is defined as
a product of the vector magnitudes times the cosine of the smaller angle between them
when the two are drawn tail,

A ·B = |A||B| cos θAB . (1.1)

Implication. As follows from the definition, the two vectors are orthogonal iff their
scalar product is equal to zero.

In terms of the vector coordinates,

A ·B = AxBx +AyBy +AzBz. (1.2)

Note that the dot product always results in a scalar quantity. The dot product obeys the
commutative and distributive rules

• A ·B = B ·A, commutativity;

• A · (B + C) = A ·B + A ·C, distributivity.

As a corollary of the definition,

A ·A = |A|2,
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implying an alternative way of determining the vector magnitude without resorting to
vector components,

|A| =
√

A ·A .

Further, the mutual orthogonality of the Cartesian unit vectors implies that

ax · ay = ay · az = ax · az = 0 , (1.3)

and
ax · ax = ay · ay = az · az = 1 . (1.4)

Example. 1.1. Show that (A + B) · (A−B) = |A|2 − |B|2.
Solution. Using the properties of the dot product: (A + B) · (A−B) = A ·A + B ·
A−A ·B−B ·B = |A|2 − |B|2.

Definition. The cross product of two vectors A and B, written as A × B is
a vector whose magnitude is the area of the parallelogram formed by A and B–see
Fig.1.4–and is in the direction determined by the right-handed cork screw rule illus-
trated in Fig.1.5.
It follows that

A×B = AB sin θABan ,

where an is a unit normal to the plane containing A and B.

A


B


BA




Figure 1.4: Illustrating the cross-product.

In the coordinate representation,

A×B =

∣∣∣∣∣∣
ax ay az

Ax Ay Az

Bx By Bz.

∣∣∣∣∣∣
The cross product obeys the following rules

• A×B = −B×A;

• A× (B + C) = A×B + A×C;
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Figure 1.5: The right-handed cork-screw rule.

• A×A = 0.

Also, the mutual cross products of the Cartesian unit vectors obey the rule

ax × ay = az , (1.5)

with cyclic permutations for the right-handed Cartesian system as is shown in Fig. 1.6.

zâ

yâ
xâ

yâ

xâ

zâ

Figure 1.6: Illustrating unit vector cross products under cyclic permutations.

Example. 1.2. Show that (A + B)× (A−B) = 2B×A.
Solution. Using the properties of the cross product: (A + B)× (A−B) = A×A +
B×A−A×B−B×B = 2B×A.
Example. 1.3. Given, ax ×A = −ay + 2az and ay ×A = ax − 2az , Find A.
Solution. Assume that A = aax + bay + caz . It follows that ax ×A = b(ax × ay) +
c(ax× az) = baz − cay = −ay + 2az . Hence, c = 1 and b = 2. Similarly, ay ×A =
−aaz + cax = ax − 2az , implying that c = 1 and a = 2. Thus A = 2ax + 2ay + az .
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As a consequence of the scalar and cross product definitions, we can infer that the
scalar triple product can be represented as

A · (B×C) = (A×B) ·C = B · (C×A) . (1.6)

In the Cartesian coordinates, the scalar triple product can be written as

A · (B×C) =

∣∣∣∣∣∣
Ax Ay Az

Bx By Bz

Cx Cy Cz

∣∣∣∣∣∣ (1.7)

Finally, the vector triple product can be expressed as using “bac-cab” mnemonic
rule in the form

A× (B×C) = B(A ·C)−C(A ·B). (1.8)

Example 1. 4. Show that A ·B ×C is a volume of a parallelepiped having A, B,
and C as three contiguous edges.
Solution. A ·B×C = |A| cos θ︸ ︷︷ ︸

height

|B×C|︸ ︷︷ ︸
area

, see the sketch below.

C


B


A




|| CB




Figure 1.7: Geometric illustration of the scalar triple product.

Example 1.5. Given A ·B = A ·C and A×B = A×C, and A is not a null vector,
show that B = C.
Solution. Choose the x-axis along the direction of A. It follows that A = Aax where
A 6= 0. Assume further that B = Bxax+Byay+Bzaz and C = Cxax+Cyay+Czaz .
A ·B = A ·C then implies thatBx = Cx, and A×B = A×C implies thatBy = Cy

as well as Bz = Cz . As the components are the same, the vectors are equal.

1.4 Complex numbers and phasors
Definition. A complex number z can be expressed in the so-called rectangular form
as

z = u+ jv ,
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where j =
√
−1 and u and v are real numbers. Alternatively, it can be expressed in the

polar form as

z = rejφ = r(cosφ+ j sinφ) ,

where the magnitude r and phase φ can be written as

r =
√
u2 + v2, φ = tan−1 v/u .

Geometrically, z can be represented as a ray in the uv plane making the angle φ with
the u-axis, see Fig. 1.8.

Z

u

v



Figure 1.8: Polar form of a complex number.

Given two complex numbers, z1 = u1+jv1 = r1e
jφ1 and z2 = u2+jv2 = r2e

jφ2 ,
the result of their addition or subtraction can be most easily expressed in the rectangular
form:

z1 ± z2 = u1 ± u2 + j(v1 ± v2).

On the other hand, their multiplication and division are more naturally expressed in the
polar form as

z1z2 = r1r2e
j(φ1+φ2),

z1
z2

=
r1
r2
ej(φ1−φ2).

One can also introduce complex conjugation by the definition

z∗ = u− jv = re−jφ .

In the polar form, a complex number is not uniquely defined such that

z = rejφej2πk, k = 0,±1,±2,±3 . . . .
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This is because ej2πk = 1 for any integer k. The latter form comes in handy whenever
we want to find roots of a complex number. In general all nth roots can be represented
as

z1/n = r1/nejφ/nej2πk/n.

For example, if n = 2, there are only two distinct roots corresponding to k = 0 and
k = 1; since ej0 = 1 and ejπ = cosπ + j sinπ = −1, we obtain

√
z = ±

√
rejφ/2.

Definition. A time-harmonic signal varies sinusoidally with time.
Definition. A phasor represents a complex signal with a time-harmonic phase.
Thus any physical time-harmonic signal ψ(t) = a cos(ωt + θ), where ω and θ are
constant frequency and initial phase, respectively, can be represented in terms of a
complex phasor ψ0e

jωt as

ψ(t) = Re(ψ0e
−jωt) .

Here Re denotes the real part of the complex signal and the complex amplitude ψ0 can
be represented as

ψ0 = a ejθ ,

where a is a real amplitude. The generalization to the phasor form of a vector time-
harmonic signal is straightforward:

A(t) = Re(A0e
−jωt), A0 = |A0|ejθ.

Example 1. 6. The complex impedance of a monochromatic electromagnetic wave
of frequency ω, propagating in a lossy medium is defined as

η =

√
µ/ε

1 + jσ
εω

.

Here µ, η and σ are constitutive parameters of the medium. Express η in the polar
form.
Solution. Multiplying the numerator and denominator inside the square root by (1 −
jσ/εω), we obtain

η =

√
µ/ε

(
1− jσ

εω

)1/2[
1 +

(
σ
εω

)2]1/2
=

√
µ/ε ejθη[

1 +
(

σ
εω

)2]1/4
= |η|ejθη ,

where

|η| =
√
µ/ε[

1 +
(

σ
εω

)2]1/4
, tan 2θη =

σ

εω
.
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Chapter 2

Electromagnetic Fields and
Maxwell’s Equations

2.1 Charges, currents and electromagnetic fields
Definition. An electric charge Q quantifies the capacity of an object for electromag-
netic interaction–the greater the charge the stronger the interaction. The charges could
be positive or negative; the charges of the opposite signs attract to each other while
those of the same sign repel from one another.
The interaction force between the two point charges Q1 and Q2, separated a distance
R12 is determined by the Coulomb law

F =
1

4πε0
Q1Q2R12

R3
12

, (2.1)

where R12 is a radius vector from charge Q1 to Q2 and ε0 is the so-called free space
permittivity, given in the SI units by the expression

ε0 =
10−9

36π
, F/m (2.2)

Definition. An electric current is a flow of electric charges past a point or within a
conductor. The current I is a time rate of change of the charge Q,

I =
dQ

dt
. (2.3)

The charge are measured in coulombs, C and the currents are measured in ampères,
abbreviated A. The smallest charge encountered in nature is the electron charge e,
which is equal to −1.60219× 10−19 C.

The electric charges and currents (moving charges) are the sources of electric E
and magnetic B fields, respectively. The vector field E is known as the electric field
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intensity or electric field strength and it is measured in volts per square meter, V/m2.
The field B is more precisely referred to as the magnetic flux density for the reasons
that become clear shortly and it is measured in webers per square meter, Wb/m2. To
help visualize the behavior of electric and magnetic fields in space, we introduce the
concept of electric and magnetic field lines.
Definition. The electric field lines are, in general, curves in space such that at any
given point on the line, the electric field is tangential to the line. As electric charges
are sources/sinks of the field, the electric field lines start at positive (source) and end
at the negative (sink) charges. Alternatively, if the electric field is generated by a time-
dependent magnetic field, its lines can be closed. These possibilities are illustrated in
Fig. 2. 1.

E


E


+ Q - Q

(a) (b)

E


B


Figure 2.1: Lines of the electric field generated by (a) static electric charges and (b) a
time-dependent magnetic field.

Definition. The magnetic flux density lines are, in general, continuous curves in
space such that at any given point on the line, the magnetic flux density is tangential
to the line. As no static magnetic charges have so far been discovered in the nature,
there are no static sources of magnetic fields–the latter are generated by moving electric
charges. Therefore, the magnetic flux density lines are either closed or go to infinity.
A natural question then arises regarding the quantitative description of electric and
magnetic fields: How can one quantify and measure E and B at a given point in space?

To answer this question, let us consider a small test charge q at rest. It is known
from the experiment that the charge placed in an electric field E generated by some
other charges experiences the force

Fe = qE . (2.4)

It follows at once from Eq. (2.4) that the electric field at a position of the test charge is
simply the force per unit charge and it can be determined as

E =
Fe

q
. (2.5)
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Note that the definition (2.5) is unambiguous, provided the test charge is so small that
it does not alter the field at its location. Thus, the strength of the electric field at the
position of the charge can be determined by measured a force acting on a small test
charge at rest.

Next, if a small test charge moves with the velocity v in a magnetic field B, it is
known to experience the magnetic force

Fm = q(v ×B). (2.6)

Example 2.1. Determine the components of the charge velocity v‖ and v⊥, parallel
and perpendicular to the magnetic field B, respectively.
Solution. Introduce a unit vector along B, b = B/B. It follows from the definition of
the dot product that the projection of v onto b is v · b. Hence the vector projection
along b is v‖ = (b · v)b. Consequently, v⊥ = v − v‖ = v − (v · b)b. Note that
v⊥ · b ≡ 0.

On taking a cross product of both sides of Eq. (2.6) with v⊥ we obtain

Fm × v⊥ = −qBv⊥ × (v × b) = −qv(v⊥ · b) + qB(v · v⊥) = qB(v · v⊥).

Note also that v⊥ ·v = v2−v2
‖. Thus we arrive at the expression for the magnetic field

B =
(Fm × v⊥)
q(v2 − v2

‖)
. (2.7)

Thus, we can determine B by measuring the force on a moving charge and the charge
velocity. Note that Eq. (2.7) is indeterminate whenever v = v‖, because in this case
the force equals to zero according to Eq. (2.6). So the charge velocity should have
a component at an angle to the magnetic field to unambiguously determine the latter.
We note that Eqs. (2.5) and (2.7) serve as the operational definitions of E and B,
respectively. The latter characterize the strength of electric and magnetic interactions
at a given point in space–described by a position radius vector r– and hence are local
measures of the electromagnetic interactions in a given system. Thus, E and B are
functions of the space coordinate; in general, they can also, vary with time,

E = E(r, t) and B = B(r, t).

If a test charge is moving in both electric and magnetic fields, which are, in general,
functions of time, it experiences the combined Lorentz force,

FL = qE + qv ×B ,

and the electric and magnetic fields can be thought of as components of a common
entity called the electromagnetic field.
Example 2.2. A point charge Q with a velocity v = v0ax enters a region of space
with a uniform magnetic field. The magnetic flux density in the region is B =
Bxax +Byay +Bzaz . What E should exist in the region for the charge to proceed
without change of its velocity.
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Solution. Assuming E = Exax + Eyay + Ezaz and writing down the second law of
Newton in components, we arrive at the equations,

mv′x = QEx +Q(vyBz −Byvz),

mv′y = QEy +Q(vzBx −Bzvx),

and
mv′z = QEz +Q(vxBy −Bxvy).

Here the prime stands for a time derivative. The charge will proceed with the same
velocity if all components of the acceleration vanish at all times, i. e, v′x = v′y = v′z =
0. Since at t = 0 vy = vz = 0, it follows that Ex = 0, Ey = Bzv0 and Ez = −v0By .
Thus, E = v0(Bzay −Byaz).

2.2 Electromagnetic fields in materials
The response of a material to an applied electric field depends on whether the material
has free electrons and therefore can conduct currents or not. Materials of the first kind
are called conductors whereas the rest are known as dielectrics.

In conductors, the electrons are free to move and their motion past heavy ions of
a crystal lattice constitutes a conduction current. One can introduce a local quantity
characterizing the current, the current density J measured in ampères per square meter,
which is just a current per unit cross section of a conductor. The total current is then

I =
∫
dS · J , (2.8)

where dS = andS is an oriented elementary surface, an being a unit normal to the
surface as is indicated in Fig. 2.2.

s

dS

J

Figure 2.2: Illustrating the current density definition.
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The integral on the r.h.s of Eq. (2.8) is an example of a flux of the vector field–in
this instance J–through an open surface S.
Example 2. 3. Show that J = ρvv where ρv is the volume charge density and v is
the drift velocity of charge carriers.
Solution. Consider a small volume element dv = dS · vdt. The amount of charge
inside a cylindrical volume of height v · andt with a finite cross-section S is dQ =∫

S
(dS · v)dtρv . By definition, the current through the cross-section S is then I =

dQ/dt =
∫

S
dS · vρv =

∫
S
dS · J. It follows that J = ρvv.

The current density is related to the electric field via the local form of Ohm’s law,

J = σE , (2.9)

where σ is called the electric conductivity, measured in siemens per meter, S/m.
In the dielectrics, the electrons are bound to nuclei forming neutral atoms. The

application of an external electric field, however, causes spatial displacement of neg-
atively charged electron clouds away from positively charged nuclei; the latter being
so heavy that they remain immobile. The medium is then said to be polarized. This
process is illustrated in Fig. 2.3.

E



(a) (b) (c)

   Q

E

d

Figure 2.3: Illustrating the polarization of a nonpolar dielectric.

The polarization can be quantitatively described in terms of individual atom dipole mo-
ments.
Definition. An individual dipole moment vector p is defined as the product of an elec-
tron cloud charge and a position vector from the nucleus to the center of the electron
cloud. For instance, for an atom having just one bound electron, p = −er.

The dielectrics with the atoms that have no dipole moments in the absence of the
applied field are called nonpolar. Alternatively, the medium atoms of polar dielectrics
can have nonzero dipole moments even in the absence of E, but they are randomly
oriented. As the external electric field is applied, though, the dipoles align along the
field resulting in the medium polarization.

Regardless of a specific polarization origin, we can define a macroscopic polariza-
tion field.
Definition. The polarization field P(r, t) is a dipole moment per unit volume at the
position r within a polarized medium.
The polarized medium alters (reduces) the external electric field E such that the effec-
tive field inside the medium is described in terms of the electric flux density D,

D = ε0E + P , (2.10)
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where ε0 = 8.854×10−12 farad per meter (F/m) is the so-called dielectric permittivity
of free space. Eq. (2.10) works for any dielectric; throughout this course we will be
dealing with linear, homogeneous, isotropic dielectrics for which P is linearly related
to E viz.,

P = ε0χeE , (2.11)

where χe is the electric susceptibility. It follows from Eqs. (2.10) and (2.11) that

D = ε0(1 + χe)E = ε0εrE = εE . (2.12)

Here ε is the dielectric permittivity of the medium, and εr is a dielectric constant
(relative permittivity). Note that while ε has the same units as ε0, i.e, farads per meter,
εr is dimensionless.

In reality, of course, there are no ideal conductors, nor are there ideal dielectrics.
Real materials have both bound and free (conducting) electrons and are characterized
by finite ε and σ. The distinction in the behavior of dielectrics and conductors depends
on the frequency of the applied time-harmonic electric field, E(t) = Eωe

−jωt. To drive
this point home, we develop a simple classical model of matter response to an external
time-harmonic field. In this model–which works well for linear homogeneous isotropic
materials–atoms are treated as simple harmonic oscillators. That is, bound electrons
are assumed to be attached to the nuclei by “springs” which provide “restoring” forces
proportional to the electron displacement from the nucleus. Physically, the restoring
force experienced by an electron is due to its attraction to the nucleus. Assume that
each atom has Z bound electrons. Assume further that there are fs electrons per atom
having the binding frequency ωs which corresponds to a particular type of the “spring”.
The quantities {fs} are referred to as the oscillator strengths.

Whenever an electron having the binding frequency ωs is displaced by the displace-
ment vector rs in response to the external electric field, it experiences three forces: the
restoring force, Fr = −mω2

s rs, the damping force, Fd = −2mγsṙs–where γs is a
phenomenological damping constant–and the force due to the external electric field,
Fe = −eEωe

−jωt.
The equation of electron motion (second law of Newton) is then

mr̈s = −mω2
s rs − 2mγsṙs − eEωe

−jωt. (2.13)

Here each “dot” stands for a time derivative. We seek a driven solution to Eq. (2.13) in
the form,

rs(t) = rsωe
−jωt. (2.14)

It follows from Eqs. (2.13) and (2.14) that the electron displacement amplitude is

rsω = − eEω

m(ω2
s − ω2 − 2jωγs)

, (2.15)

implying that

rs(t) = − eE(t)
m(ω2

s − ω2 − 2jωγs)
. (2.16)
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The induced individual dipole moment of the electron of this type will be ps = −ers.
Next, if there are N atoms per unit volume, the induced polarization is

P = N
∑

s

fsps = −Ne
∑

s

fsrs =
Ne2

m

∑
s

fsE
(ω2

s − ω2 − 2jωγs)
. (2.17)

Note that the oscillator strengths satisfy the so-called sum rule∑
s

fs = Z. (2.18)

On comparing Eqs. (2.11), (2.12) and (2.17), we infer that

ε(ω) = ε0

[
1 +

Ne2

m

∑
s

fs
(ω2

s − ω2 − 2jωγs)

]
, (2.19)

which provides a classical expression for the dielectric permittivity of materials as
a function of frequency of the applied electric field. Here the imaginary part of ε
describes absorption of electromagnetic waves as we will see in Chapter 3.

Let us now explore what happens if the frequency of the applied electric field is
close to a particular resonant frequency of the material. For the sake of clarity, let that
be the lowest bound frequency of the dielectric, ω0 6= 0, i.e, ω ≈ ω0. In this case, we
can single out the resonant term in Eq. (2.19) implying that

ε(ω) = εNR(ω) +
ε0Ne

2f0
m

1
(ω2

0 − ω2 − 2jωγ0)
. (2.20)

As typically γs � ωs, the contribution to the permittivity due to non-resonant terms,
εNR is a purely real and only weakly frequency dependent. It can be expressed as

εNR(ω) ' ε0
∑
s 6=0

Ne2fs/m

(ω2
s − ω2)

. (2.21)

Notice that close to resonance, we can approximate

−ω2 + ω2
0 − 2jγ0ω ' 2ω(ω0 − ω − jγ0) ' 2ω0(ω0 − ω − jγ0). (2.22)

It can be inferred from Eqs. (2.21) and (2.22) that the electric susceptibility near optical
resonance can be represented as

χe(ω) = χ′e(ω) + jχ′′e (ω), (2.23)

where

χ′e(ω) = χNR(ω) +
Ne2f0
2ε0mω0

[
ω − ω0

(ω − ω0)2 + γ2
0

]
, (2.24)

and

χ′′e (ω) =
Ne2f0
2ε0mω0

[
γ0

(ω − ω0)2 + γ2
0

]
. (2.25)
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Figure 2.4: Imaginary (top) and real (bottom) parts of linear susceptibility as functions
of frequency near resonance.

The real and imaginary parts of χe are sketched as functions of the frequency in
Fig. 2.5.

The difference between conductors and dielectrics can then be attributed to the
presence of free electrons in the former. Indeed, by looking into the low-frequency
limit, we notice that for pure dielectrics the lowest bound frequency must be nonzero,
while conductors can have a fraction of electrons, f0, say, that have ω0 = 0; those
are essentially free electrons. Consequently, the dielectric permittivity of conductors is
given by the expression

εc(ω) = εb(ω) + j
ε0Nf0e

2

mω(2γ0 − jω)
, (2.26)

where εb is the overall contribution of the bound electrons with ωs 6= 0. Since free
electrons can conduct currents, we can use Eq. (2.16) and Example 2.3, to work out the
current density,

J = −Nef0ṙ0 =
Nf0e

2

m(2γ0 − jω)
E. (2.27)

On comparing Eqs. (2.9) and (2.27), we infer the expression for the conductivity,

σ(ω) =
Nf0e

2

m(2γ0 − jω)
. (2.28)

It is seen from Eq. (2.28) that in the dc limit ω → 0,

σ → Nf0e
2

2mγ0
= σ0, (2.29)
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the conductivity is real, describing dc currents. In view of Eq. (2.29), the expression
for σ can be cast into the form

σ(ω) =
σ0

1− jωτ
, (2.30)

where τ = 1/2γ0 is a characteristic time for current relaxation in conductors.
Next, comparing Eqs. (2.26) and (2.28), we can express the former as

εc(ω) = εb(ω) + j(σ/ω). (2.31)

Eq. (2.31) implies that losses in real conductors/metals come in two guises: the absorp-
tion of electromagnetic waves by bound electrons–which is described by the imaginary
part of εb–and ohmic losses due to generating electric currents as described by the
second term on the r.h.s.

Finally, we note that at high frequencies, ω � max(ωs), dielectrics and conductors
respond to the applied electric field the same wave. In this limit, we can neglect all
{ωs} and {γs} in the denominator of Eq. (2.19), leading to

ε = ε0

(
1−

ω2
p

ω2

)
, (2.32)

where we used Eq. (2.18) and introduced the plasma frequency

ωp =

√
NZe2

ε0m
. (2.33)

The phenomenological treatment of macroscopic medium response to the magnetic
field parallels that we just presented. An external magnetic field causes the medium
magnetization: the atomic magnetic moments align along the applied field causing
a finite macroscopic average dipole moment density. The latter called magnetization
M, and is a magnetic analog of P. By analogy, the magnetic field intensity H within
the magnetized medium can be determined as

H = B/µ0 −M . (2.34)

Eq. (2.34) holds true for any medium. Here,

µ0 = 4π × 10−7 , H/m, (2.35)

is known as the free space permeability. In the case of a linear, homogeneous,
isotropic magnetic, we obtain

M = χmH , (2.36)

where χm is the magnetic susceptibility, implying that

B = µ0(1 + χm)H = µ0µrH = µH . (2.37)

Here µ and µr are the magnetic permeability and relative magnetic permeability of
the medium. Note that while E and B are directly related to measurable quantities, the
forces on charges, D and H are auxiliary fields.
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2.3 Global or integral form of Maxwell’s equations
The first two Maxwell’s equations are mathematical expressions of the fact that static
charges are sources of the electric field and there are no static magnetic charges. In
particular, the first Maxwell equation–also known as the electric Gauss’s law–states
that the total flux of D through any closed surface S is equal to the total enclosed
charge, ∮

S

dS ·D = Qenc =
∫

v

dvρv . (2.38)

Here the circle around the integral implies that the surface for the surface integration
must be closed. The choice of the oriented elementary surface dS = andS used on
the l.h.s of Eq. (2.38) is ambiguous as the unit normal can be directed either inside or
outside the volume enclosed by S. By convention, we choose an to be the outward
unit normal as is indicated in Fig. 2.5. Also ρv is the volume density–in C/m3–of the
charge inside S.





D

na

S

dS

Figure 2.5: Outward unit normal to a closed surface S.

Since there are no static magnetic charges, the second Maxwell equation (magnetic
Gauss’s law) states that ∮

S

dS ·B = 0 . (2.39)

It is now clear from Eqs. (2.38) and (2.39) why D and B are referred to as the electric
and magnetic flux densities, respectively.

In the Cartesian coordinate system, the infinitesimally small surface and volume
elements required in Eqs. (2.38) and (2.39) can be expressed as

dS =

 dydzax

dxdzay

dxdyaz
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and
dv = dxdydz.

The surface element calculation is illustrated in Fig. 2.6.

(a) (b) (c)

za

ya

xa

x

y

z

dx

dz
dx

dz

dy

dy

Figure 2.6: Illustrating the elementary surfaces in the Cartesian coordinates.

The third Maxwell equation, or the Faraday’s law, relates the electric field circu-
lation around any closed path C with the time rate of change of the magnetic flux
through an open surface S bounded by the path,∮

C

dl ·E︸ ︷︷ ︸
emf

= − d

dt

∫
S

dS ·B . (2.40)

In the circulation integral on the l.h.s. of Eq. (2.40), dl is an oriented infinitesimally
small path element which can be expressed in the Cartesian coordinates as

dl = dxax + dyay + dzaz.

The fourth Maxwell equation–sometimes referred to as Ampère’s law–links the
circulation of the magnetic field along a closed path with the flux of the overall current–
conduction current plus displacement current–through an open surface S rimmed by
the path, ∮

C

dl ·H︸ ︷︷ ︸
mmf

=
∫

S

dS · J︸ ︷︷ ︸
conduction

+
d

dt

∫
S

dS ·D︸ ︷︷ ︸
displacement

. (2.41)

To summarize, the first two Maxwell equations state the existence of static electric
and nonexistence of static magnetic charges. The third one implies that a time-varying
magnetic field can induce an electric field with the electromotive force (emf),

Eemf ≡
∮

C

dl ·E , (2.42)
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in a given closed loop determined by the time rate of change of the magnetic flux
through the loop, that is

Eemf = − d

dt

∫
S

dS ·B . (2.43)

The fourth equation tells us that conduction and/or displacement currents generate a
magnetic field with the magnetomotive force (mmf),

Emmf ≡
∮

C

dl ·H, (2.44)

in a closed loop determined by the time rate of change of the total current flux through
the loop. In particular, in the absence of conduction currents J = 0, the time-varying
electric fields can generate magnetic fields. Thus the propagation of electromagnetic
waves in source-free space, (ρv = 0, J = 0) is a direct consequence of Eqs. (2.40)
and (2.41). Note also that the displacement current is a fictitious current that has to do
with time-varying electric fields.
Example 2. 4. A magnetic flux density is given by B = ayB0/x Wb/m2, where B0

is a constant. A rigid rectangular loop is situated in the xz-plane with the corners
at the points (x0, z0), (x0, z0 +b), (x0 +a, z0 +b), (x0 +a, z0). If the loop is moving
with the velocity v = v0ax, determine the induced emf.
Solution. At the time t the corners of the loop will be at the points (x0 + vt, z0), (x0 +
vt, z0 + b), (x0 + a+ vt, z0 + b), (x0 + a+ vt, z0). Using the Faraday’s law, Eemf =∮

C
dl ·E = − d

dt

∫
S
dS ·B. In our case, dS = dxdzay implying that∫

S

dS ·B = B0

∫ z0+b

z0

dz

∫ x0+a+vt

x0+vt

dx

x
= B0b ln

x0 + a+ vt

x0 + vt
.

It then follows that

Eefm = B0bv

(
1

x0 + vt
− 1
x0 + a+ vt

)
.

Example 2. 5. Solve the previous problem for a stationary loop in the time-varying
magnetic field B = ay(B0/x) cosωt Wb/m2.
Solution. If the loop is at rest, by analogy with the previous example,

Eemf = − d

dt

∫
S

dS ·B = ωB0 sinωt
∫ z0+b

z0

dz

∫ x0+a

x0

dx

x

= ωbB0 sinωt ln
x0 + a

x0
. (2.45)

Thus,
Eemf = ωbB0 sinωt ln

x0 + a

x0
.

Example 2. 6. Assume that the loop in Example 2.3 moves with the velocity v =
v0ax in the time-varying field B = ay(B0/x) cosωt Wb/m2, find the induced emf.
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Solution. In this case, the loop moves and the magnetic flux density changes with time
such that

Eemf = −B0
d

dt
cosωt

∫ z0+b

z0

dz

∫ x0+a+vt

x0+vt

dx

x

= −B0b
d

dt

(
cosωt ln

x0 + a+ vt

x0 + vt

)
. (2.46)

Doing the derivative, we obtain

Eemf = B0b

[
ω sinωt ln

x0 + a+ vt

x0 + vt
+ v cosωt

×
(

1
x0 + vt

− 1
x0 + a+ vt

)]
. (2.47)

2.4 Boundary conditions in electro-magnetics
We consider an interface separating two media. The boundary conditions linking the
electromagnetic fields on both sides of the interface can be derived from the Maxwell
equations in the integral form. To this end, introduce a set of three mutually orthogonal
unit vectors: the outward unit normal pointing into medium 2, an12, the unit tangential
vector aτ and unit bi-normal vector ab such that (see Fig. 2. 7.),

11 , BE


11 , HD


C

â

bâ

ss J


,

22 , BE


22 , HD
nâ

S
1

2

Figure 2.7: Electromagnetic fields at the interface between the two homogeneous me-
dia.

ab = an12 × aτ . (2.48)

22



Let us decompose all fields into normal and tangential components to the interface such
that

E = En + Eτ , B = Bn + Bτ , (2.49)

with the similar expressions for D and H. It can be inferred from geometry that

En = an(E · an) (2.50)

and
Eτ = E− an(E · an) = an × (E× an), (2.51)

where “bac-cab” rule was used on the r.h.s of Eq. (2.51).
Applying the electric Gauss’s law, Eqs. (2.38), to the cylindrical Gaussian pillbox

S shown in Fig. 2.7 and taking the limit of a very shallow pillbox, we obtain∮
S

dS an12 ·D = an12 · (D2 −D1)∆S =
∫
dvρv = ρS∆S, (2.52)

where ρs is the surface charge density on the interface. It follows at once from Eq. (2.52)
that

an12 · (D2 −D1) = ρS . (2.53)

By the same token,
an12 · (B2 −B1) = 0 , (2.54)

because there are no magnetic charges. Eqs. (2.53) and (2.54) relate the normal com-
ponents of the electric and magnetic flux densities on both sides of the interface.

Applying now the Faraday law (2.40) to the Stockesian loop C, we obtain in the
limit of a very small loop the expression∮

C

dl ·E = aτ · (E2 −E1)∆l = 0, (2.55)

since ∂tB is finite on the surface of C and the surface area vanishes as we shrink the
loop sides. Thus,

E2τ −E1τ = 0, (2.56)

or, alternatively, with the help of Eq. (2.51),

an12 × [an12 × (E2 −E1)] = 0, (2.57)

implying for an arbitrary point of the surface that

an12 × (E2 −E1) = 0 . (2.58)

At the same time, the Ampére equation tells us that∮
C

dl ·E = aτ · (H2 −H1)∆l = (ab × an12) · (H2 −H1)∆l =

= ab · [an12 × (H2 −H1)]∆l =
∫

SC

dSab ·
(
J +

∂D
∂t

)
= ab · Js∆l (2.59)
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where Js is the surface current at the interface. It can be inferred from (2.59) that

an12 × (H2 −H1) = Js . (2.60)

Eqs. (2.53), (2.54), (2.58) and (2.60) constitute the general boundary conditions in the
electromagnetic theory.

2.5 Local or differential form of Maxwell’s equations
The Maxwell equations can also be cast into a differential (local) form in which they
pertain to any spatial point within a given region of space. Although local Maxwell’s
equations are less physically intuitive, they are more suitable to mathematically de-
scribe versatile electromagnetic problems. We begin by introducing local measures of
the vector field flux and circulation, the flux and circulation densities, or the divergence
and curl of the vector field.

Definition. The divergence of a vector field A at a given point is the net outward
flux of A per unit volume at the point. Mathematically,

divA ≡ lim
∆v→0

∮
S
dS ·A
∆v

. (2.61)

It is known from the vector calculus that the divergence can also be written in terms of
the Del operator, denoted ∇, as

divA = ∇ ·A. (2.62)

In the Cartesian coordinates, the latter is defined as

∇ = ax
∂

∂x
+ ay

∂

∂y
+ az

∂

∂z
.

And since A = Axax +Ayay +Azaz , we conclude that

divA = ∇ ·A =
∂Ax

∂x
+
∂Ay

∂y
+
∂Az

∂z
. (2.63)

In practice, the following divergence theorem is often handy in working out fluxes of
vector fields through closed surfaces.
Divergence Theorem. The flux of a vector field through a closed surface equals the
integral of the vector field divergence over the volume enclosed by the surface,∮

S

dS ·A =
∫

v

dv∇ ·A. (2.64)

We are now in a position to express the first two Maxwell’s equations in the local
form. Applying the divergence theorem to the l.h.s of Eq. (2.38), we obtain∮

S

dS ·D =
∫

v

dv∇ ·D =
∫

v

dvρv. (2.65)
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It can be inferred from Eq. (2.65) that∫
v

dv(∇ ·D− ρv) = 0. (2.66)

Since the integral equation (2.66) holds for any volume, we conclude that the integrand
must be equal to zero at any point within the volume,

∇ ·D = ρv . (2.67)

By the same token,
∇ ·B = 0 . (2.68)

Next, we introduce the curl of a vector field as
Definition. The curl of a vector field A at a given point is a vector with a magnitude
equal to the maximum net circulation of A per unit area at the point. The curl is
directed along a unit normal to the infinitesimal area around the point which is oriented
to maximize the curl. The unit normal is chosen to conform to the right-hand rule:
whenever the fingers of your right hand follow the direction of dl along the area border,
your thumb points in the direction of the unit normal.

dS

nâ

dl

Figure 2.8: Illustrating the choice of unit normal in curl evaluation.

Mathematically, curl can be defined as

curlA = ∇×A = lim
∆S→0

∮
C
dl ·A
∆S

. (2.69)

In the Cartesian coordinates, the curl can be expressed as

∇×A =

∣∣∣∣∣∣
ax ay az
∂
∂x

∂
∂y

∂
∂z

Ax Ay Az

∣∣∣∣∣∣ . (2.70)

The following curl theorem is often useful in determining the circulation of a vector
field around a closed loop.
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Curl Theorem. The circulation of a vector field along a closed path is equal to the
flux of the vector field curl through an open surface bounded by the path,∮

C

dl ·A =
∫

S

dS · ∇(×A). (2.71)

With the aid of Eq. (2.71) and assuming that the loop C is stationary, one can
transform the third Maxwell equation as∮

C

dl ·E =
∫

S

dS · (∇×E) = −
∫

S

dS · ∂B
∂t
,

implying that locally

∇×E = −∂B
∂t

. (2.72)

Similarly, ∮
C

dl ·H =
∫

S

dS · (∇×H) =
∫

S

dS
(
J +

∂D
∂t

)
.

It can then be inferred at once that

∇×H = J +
∂D
∂t

. (2.73)

Here the second term on the rhs is the displacement current (density) defined as

Jd =
∂D
∂t

. (2.74)

Example 2.7. Given B = (10−7/3) cos(6π × 108t − 2πz)ay Wb/m2 in free space,
find E.
Solution. In free space, B = µ0H and D = ε0E. Hence, H = (1/12π) cos(6π ×
108t− 2πz)ay A/m. Use Ampère’s law (2.73) with J = 0,

∇×H = ε0
∂E
∂t
, (2.75)

we can work out the l.h.s,

∇×H = ax
1
6

sin(6π × 108t− 2πz) = axε0
∂Ex

∂t
(2.76)

It follows that the electric field must have only x-component. We can infer from
Eqs. (2.75) and (2.76) that E should have the form

E = axA cos(6π × 108t− 2πz), (2.77)

where A is an unknown constant. On substituting from Eq. (2.77) into Eq. (2.75) and
using Eq. (2.76), we obtain

1
6

sin(6π × 108t− 2πz) = 6πε0 ×A× 108 sin(6π × 108t− 2πz),

implying that A = 10−8/36πε0. As ε0 = 10−9/36π, we arrive at A = 10. Thus,
E = 10 cos(6π × 108t− 2πz)ax V/m.
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2.6 Conservation laws in electromagnetic theory
We will now examine two important conservation laws encountered in the electromag-
netic theory: the charge and electromagnetic energy conservation. While the former
is a fundamental law of nature, independent of Maxwell’s equations, the latter is their
direct consequence.

The charge conservation law states that charges cannot be created, nor can they
be annihilated. In a global sense, this statement implies that an overall charge within
any finite volume must be conserved. Therefore the time rate of change of the charge
within the volume is equal to the current flux through the surface enclosing the volume,

d

dt

∫
dvρv = −

∮
dS · J . (2.78)

The minus sign in Eq. (2.78) indicates the fact that the charge within the volume de-
creases (increases) if the current flows outside (inside) the volume, see Fig. 2.9.

)(a )(b

J


0
dt

dQ 0
dt

dQ

J


Figure 2.9: Illustrating the charge conservation law.

Assuming the volume in Eq. (2.78) is at rest, the local form of the charge conser-
vation law follows from Eq. (2.78) on the application of the divergence theorem to the
r.h.s,

d

dt

∫
dvρv =

∫
v

dv
∂ρv

∂t
= −

∮
dS · J = −

∫
dv∇ · J. (2.79)

It follows at once from Eq. (2.79) that∫
v

(
∂ρv

∂t
+∇ · J

)
= 0, (2.80)

implying the local continuity equation

∂ρv

∂t
+∇ · J = 0 . (2.81)
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Example 2.8. Given J = axe
−x2

, determine the time rate of change of the charge
density at (−1, 0, 0) and at (1, 0, 0).
Solution. Using the continuity equation,

∂ρv

∂t
= −∇ · J = −∂Jx

∂x
= 2xe−x2

.

Thus at the point (−1, 0, 0), ∂ρv/∂t = −2e−1 < 0, whereas at (1, 0, 0) ∂ρv/∂t =
2e−1 > 0. The current flows to the right.

Let us now explore the electromagnetic energy propagation in a material medium.
We assume that the medium is linear, homogeneous and isotropic as far as its electro-
magnetic properties are concerned,

D = εE, B = µH, (2.82)

and the current obeys Ohm’s law
J = σE. (2.83)

In view of Eqs. (2.82) and (2.83), Maxwell’s equations can be cast into the form

∇ ·E = ρv/ε, ∇ ·H = 0; (2.84)

∇×E = −µ∂H
∂t

, (2.85)

and
∇×H = σE + ε

∂E
∂t
. (2.86)

Next, taking a dot product of Eq. (2.85) with H and Eq. (2.86) with E, we obtain

H · (∇×E) = −µH · ∂H
∂t

= −µ
2
∂H2

∂t
, (2.87)

and

E · (∇×H) = σE2 + εE · ∂E
∂t

= σE2 +
ε

2
∂E2

∂t
. (2.88)

Recalling the vector calculus identity,

∇ · (R×Q) = Q · (∇×R)−R · (∇×Q), (2.89)

for any vector fields R and Q, and choosing Q = H and R = E, and subtracting
Eq. (2.88) from Eq. (2.87), we arrive at

∇ · (E×H) = − ∂

∂t

(
1
2
εE2 +

1
2
µH2

)
− σE2. (2.90)

Integrating Eq. (2.90) over the volume and using the divergence theorem on the l.h.s,
we obtain∮

S

dS · (E×H) = − ∂

∂t

∫
v

dv

(
1
2
εE2 +

1
2
µH2

)
−
∫

v

dv σE2. (2.91)
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Finally, rearranging terms we obtain the electromagnetic energy conservation law in
the form

∂

∂t

∫
v

dv wem = −
∮

S

dS · P −
∫

v

dvσE2 . (2.92)

Here

wem =
1
2
εE2 +

1
2
µH2 , (2.93)

is the electromagnetic energy density in J/m3 and

P = E×H , (2.94)

is the so-called Poynting vector representing the instantaneous electromagnetic power
flow, i.e., the electromagnetic power flowing per unit cross section in the medium,
W/m2. The second term on the r.h.s. of Eq. (2.92) describes ohmic losses. Thus, the
electromagnetic energy conservation law asserts that the electromagnetic energy inside
a finite volume can only change if the energy flows in or out of the volume through its
surface and is lost inside to ohmic losses. Note the conservation law (2.92) is a direct
consequence of Maxwell’s equations.
Example 2.9. Given B = ayB0z cosωt and its is known that E has only an x-
component, determine the electric field generated by this magnetic field.
Solution. The Faraday law implies

∇×E = −∂B
∂t

= ayωB0z sinωt. (2.95)

As there is only an x-component of E, E = axE(x, y, z, t), say, we have

∇×E = ay∂zE − az∂yE. (2.96)

On comparing Eqs. (2.95) and (2.96), we conclude that

∂yE = 0, ∂zE = ωB0z sinωt. (2.97)

It follows that

E(x, z, t) =
ωB0z

2

2
sinωt+ f(x, t).

Here f(x, t) is an arbitrary function of time. In the limit ω = 0, the magnetic field
is static and hence it cannot generate any electric field. Therefore, we conclude that
f(x, t) = 0. Thus, E = axωB0(z2/2) sinωt.
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Chapter 3

Plane electromagnetic waves

3.1 Fundamentals of wave motion
Definition. A monochromatic wave is a periodic function of both space and time.
A physical field is said to behave as a monochromatic wave if it oscillates sinusoidally
in space and time. Consider, for simplicity, a one-dimensional scalar field U(x, t)–
where x and t stand for the spatial coordinate and time–such as a density or pressure
wave, for instance. If the field propagates to the right, say, as a monochromatic wave,
one can write

U(x, t) = A cos(ωt− kx+ θ0). (3.1)

The latter can be rewritten in the phasor form as

U(x, t) = Re{U0e
j(ωt−kx)}. (3.2)

where U0 = Aejθ0 is a complex amplitude of the wave. Note that the field remains
unchanged when translated in space by λ and in time by T . Thus, λ and T are the
wavelength and period of the wave, defined by the expressions

kλ = 2π; ωT = 2π, (3.3)

implying that

λ =
2π
k
, T =

2π
ω

. (3.4)

In Eq. (3.4), k is a wave number and ω an angular frequency of the wave. The
concepts of wavelength and period are illustrated in Fig. 3. 1.

The introduced angular frequency ω is measured in radians per second. Alterna-
tively, a linear frequency ν–measured in hertz (Hz)–can be introduced; the former is
related to the latter viz.,

ω = 2πν . (3.5)

Further, the quantity θ = ωt − kx + θ0 is called the phase of the wave and θ0 the
initial phase. The propagation velocity of a monochromatic wave can be inferred by
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y=-sinx, x∊[0,2π]
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Figure 3.1: Illustrating the definitions of the wavelength and period of the wave.

following the movement of a fixed point on the wave-front, defined as

ωt− kx+ θ0 = const.

Assume we fix a point P on the wave-front as is indicated in Fig. 3. 2b. It follows that

y=-sinx, x∊[0,2π]
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Figure 3.2: Forward-and backward-propagating plane waves.

the velocity of P can be found as

vp =
dx

dt
=
ω

k
. (3.6)

The velocity defined by Eq. (3.6) is referred to as the phase velocity of the wave.
So far we have only studied the wave propagating to the right, the so-called forward-

propagating wave. All the definitions are equally applicable to the backward-propagating
waves, which can be expressed as

U(x, t) = A cos(ωt+ kx+ θ0) = Re{U0e
j(ωt+kx)}. (3.7)

The motion of a backward-propagating wave is sketched in Fig. 3.2a. Thus, one can
express any one-dimensional monochromatic wave as

U∓ = Re{U0e
j(ωt∓kx)}. (3.8)
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Note that on introducing the wave vector k = kax and the position vector,

r = xax + yay + zaz,

one can rewrite, kx = k · r. This identity hints to the generalization of our definition
to a monochromatic wave, propagating in the direction, specified by the wave vector,

k = kxax + kyay + kzaz,

as
U(r, t) = Re{U0e

j(k·r−ωt)} . (3.9)

The wave defined by Eq. (3.9) is referred to as a plane wave because its wavefront–that
is a surface of the constant phase–is a plane such that

k · r− ωt = const . (3.10)

As a consequence of a finite wave speed, there is a time delay between an emitted and
received wave signals which can be used in various applications.
Example 3. 1. A radar signal sent from the earth to the moon is received back
on earth after a time delay of approximately 2.6 sec. Given the speed of light in
vacuum, c = 3× 108 m/s, estimate the distance between the earth surface and the
moon.
Solution. Assume the sought distance is R. The time delay for the light round trip to
the moon, ∆t = 2R/c. It follows that R = c∆t/2 ' 3.9× 105 km.

Finally, we observe that monochromatic waves represent only a particular–albeit
very important–class of waves. In general, a wave can contain many monochromatic
components. In this case, the wave is called a wave packet. Any wave packet can be
made up of a finite (infinite) number of monochromatic components via Fourier series
(transform).

3.2 Doppler effect
Whenever there is a relative motion of a time-harmonic wave source and a receiver,
the wave frequency detected by the latter differs from that emitted by the former. This
phenomenon is called the Doppler effect. The Doppler effect is a purely kinematic
effect and it takes place for waves of any physical nature whatsoever.

First, we present a “hand-waving” derivation of the Doppler effect for a source
moving along a straight line toward a receiver at rest. The situation is illustrated in Fig.
3. 3. When the source is at rest, u = 0, the receiver detects ν0 = v/λ0 wave crests
per second, where v is a wave speed and λ0 the wavelength of a monochromatic wave
emitted by the source at rest. If, however, the source moves with the velocity u = uax,
the wave speed in the receiver reference frame is veff = v + u. Consequently, the
receiver detects ν = veff/λ0 = (v + u)/λ0 = ν0 + u/λ0 crests per second, implying
that the wave frequency at the receiver shifts to

ν = ν0 + u/λ0 = ν0(1 + u/v) . (3.11)
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Figure 3.3: Doppler effect when a source S moves toward a receiver R.

Consider now a general plane monochromatic wave, represented in the receiver
reference frame, where the source moves with the velocity u relative to the receiver, as

U(r, t) = Re{U0e
j(k0·r−ωt)}. (3.12)

The same wave can be represented in the source reference frame, where there is no
relative motion, as

U(r0, t) = Re{U0e
j(k0·r0−ω0t)}. (3.13)

In Eq. (3.12), r = r0 +ut is a position vector of a point receiverR which, in the source
frame, has the position vector r0, see Fig. 3.4.
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Figure 3.4: Illustrating the geometry for an arbitrary mutual motion of the source and
receiver.

As this is actually the same wave, one can write

U(r, t) = U(r0, t). (3.14)

It follows from Eqs. (3.13) upon some rearrangement in the exponent that

U(r, t) = Re{U0e
j(k0·r−ωt)}, (3.15)

where

ω = ω0 + k0 · u = ω0 + k0u cos θ = ω0

(
1 +

u cos θ
v

)
, (3.16)
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is a general expression for a Doppler shifted angular frequency received at the receiver.
In Eq. (3.16), v is the speed of the wave and θ is the angle the wave vector k0 makes
with the source velocity u. Alternatively, in terms of linear frequencies,

ν = ν0

(
1 +

u cos θ
v

)
. (3.17)

Notice that as cos θ > 0, implying that the source moves toward the receiver, the
detected frequency at the receiver is greater, and if cos θ < 0–the source moves away
from the receiver–it is less than the wave frequency of the source at rest. It is then
sometimes said in the context of electromagnetic waves that the light frequency of
a moving away source shifts to the “red”–because the wavelength increases–while it
suffers a “blue” shift for an approaching source.
Example 3.2. Show that the wavelength of a monochromatic light source shifts to
the blue (red), if the source moves toward (away from) the receiver.
Solution. It follows from Eq. (3.17) with cos θ = ±1 that ν = ν0(1± u/c), where c is
the speed of light. Recall the definition of the wavelength, λ = c/ν and λ0 = c/ν0.
Hence, λ = λ0/(1±u/c) ' λ0(1∓u/c), as u� c in most practical situations. Thus,
∆λ = λ − λ0 ' ∓λ0u/c; ∆λ < 0 if θ = 0 (arriving source), and ∆λ > 0 if θ = π
(departing source).
In the limiting case of θ = 0, Eq. (3.17) reduces to our “intuitive” result, Eq. (3.11).
Finally, if θ = π/2, i. e., the source moves orthogonally to the receiver, our general
expression (3.17) predicts no frequency shift altogether.

3.3 Plane electromagnetic waves in free space
In the absence of charges and currents, Maxwell’s equations in free space take the form

∇ ·E = 0, (3.18)

∇ ·H = 0, (3.19)

∇×E = −µ0
∂H
∂t

, (3.20)

and
∇×H = ε0

∂E
∂t
. (3.21)

Building on our discussion of plane waves of any nature, we look for plane-wave solu-
tions to the Maxwell equations in the form

E(r, t) = Re{E0e
j(k·r−ωt)}, H(r, t) = Re{H0e

j(k·r−ωt)}. (3.22)

By linearity of Maxwell’s equations in free space, we can drop the real part and deal
with complex phasors describing the waves directly. The real part can be taken at the
end of all calculations to yield physical (real) electric and magnetic fields of a plane
wave.
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To proceed, we require the following relations.
Example 3. 3. Show that for a plane wave given by Eq. (3.22), ∇ · E = jk · E and
∇×E = jk×E.
Solutions. In the Cartesian coordinates,

∇ ·E =
(
E0x

∂

∂x
+ E0y

∂

∂y
+ E0z

∂

∂z

)
ej(kxx+kyy+kzz)e−jωt

= j(kxE0x + kyE0y + kzE0z)ej(k·r−ωt) = jk ·E. (3.23)

The second relation is proven by analogy using the Cartesian coordinate representation
of the curl.
The Maxwell equations in the plane-wave form can then be rewritten as

k ·E0 = 0 , (3.24)

k ·H0 = 0 , (3.25)

k×E0 = ωµ0H0 , (3.26)

and
k×H0 = −ωε0E0 . (3.27)

In Eqs. (3.24) – (3.27) we dropped plane-wave phasors on both sides.
Next, we can exclude the magnetic field from the fourth Maxwell equation leading

to
k× (k×E0) = −ε0µ0ω

2E0. (3.28)

Using the “bac-cab” rule on the l.h.s of Eq. (3.28), we arrive at

k(k ·E0)− k2E0 = −ε0µ0ω
2E0. (3.29)

With the aid of Eq. (3.24), we obtain

(k2 − µ0ε0ω
2)E0 = 0, (3.30)

implying that
k = ω

√
ε0µ0 = ω/c (3.31)

where we introduced the speed of light in vacuum

c =
1

√
ε0µ0

= 3× 108 m/s. (3.32)

Equation (3.31) is a dispersion relation for plane electromagnetic waves in free
space; it relates the wave number to the wave frequency. The complex amplitudes
E0 and H0–which determine the directions of E and H–are not independent, but are
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related by the Maxwell equations (3.26) or (3.27). For instance, from the knowledge
of E0 one can determine H0 using Eq. (3.26),

H0 =
(ak ×E0)

η0
, (3.33)

where ak = k/k and η0 is the free space impedance defined as

η0 =
√
µ0

ε0
' 377 Ω. (3.34)

By the same token, E0 can be inferred from H0 with the help of Eq. (3.27):

E0 = −η0(ak ×H0) . (3.35)

Example 3. 4. Show that E0, k and H0 are mutually orthogonal for a plane wave
in free space.
Solution. It follows at once from the Maxwell equations, Eq. (3.24) and (3.25) that
E0⊥k and H0⊥k. Taking a dot product of Eq. (3.26), say, with E0 we obtain, E0 ·
(k× E0) = (E0 × E0) · k = 0 = ωµ0(E0 ·H0). It follows that E0 ·H0 = 0. Thus,
E0⊥H0⊥k. See Fig. 3.5.

K


E


Η


Figure 3.5: Mutual orientation of E, H and k of a plane wave propagating in free
space.

Definition. The time evolution of the electric field vector is called polarization.
Let us consider a plane wave propagating along the z-axis in free space. As, k = kaz ,
and E⊥k, the electric field in the phasor form reads

E(z, t) = Re{(ax|E0x|ejφ0x + ay|E0y|ejφ0y )ej(kz−ωt)}, (3.36)

We will now show that, in general, the tip of the electric field vector moves around
an ellipse as the time evolves. This general polarization is called elliptic. To proceed,
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we rewrite the complex amplitude in the rectangular form as

E0xax + E0yay = (ax|E0x| cosφ0x + ay|E0y| cosφ0y)︸ ︷︷ ︸
U

+ j (ax|E0x| sinφ0x + ay|E0y| sinφ0y)︸ ︷︷ ︸
V

. (3.37)

Note that U and V are not orthogonal which makes the situation tricky. We can how-
ever introduce a transformation from U and V to u, v involving an auxiliary parameter
θ such that

U + jV = (u + jv)ejθ, (3.38)

It follows at once from Eq. (3.38) that

U = u cos θ − v sin θ, V = u sin θ + v cos θ. (3.39)

Inverting Eqs. (3.39), we obtain

u = U cos θ + V sin θ, v = U sin θ −V cos θ. (3.40)

We can now use our freedom to choose θ wisely. In particular, choosing it such that
u · v = 0 (orthogonal axes), we obtain by taking the dot product of u and v,

tan 2θ =
2U ·V
U2 − V 2

=⇒ θ =
1
2

tan−1

(
2U ·V
U2 − V 2

)
. (3.41)

Here we made use of the trigonometric identities, sin 2θ = 2 sin θ cos θ and cos 2θ =
cos2 θ − sin2 θ. By combining Eqs. (3.37) and (3.38), we can rewrite our field as

E(z, t) = Re{(u + jv)ej(kz−ωt+θ)}. (3.42)

Using the orthogonality of u and v, we can write the two orthogonal components of
the field, Eu and Ev as

Eu = u cos(kz − ωt+ θ), Ev = v sin(kz − ωt+ θ). (3.43)

It follows from Eq. (3.43) that
E2

u

u2
+
E2

v

v2
= 1, (3.44)

where u and v are given by Eq. (3.40) and θ by Eq. (3.41). Eq. (3.44) manifestly
represents an ellipse with the semi-major axis making the angle θ with the x-axis as is
shown in Fig. 3.6. The tip of E can move either clockwise or counterclockwise along
the ellipse; depending on the direction of motion of E, the polarization is left-hand
or right-hand elliptical. In the left-hand (right-hand) elliptical polarization, the fingers
of your left (right) hand follow the direction of rotation and the thumb points to the
wave propagation direction. Thus, for a general elliptic polarization, the electric field
amplitude takes the form

E(z, t) = ax|E0x| cos(kz − ωt+ φ0x) + ay|E0y| cos(kz − ωt+ φ0y) . (3.45)
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Figure 3.6: Illustrating elliptic polarization.
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Figure 3.7: Illustrating plane polarization.

Although, in general, the electric field is elliptically polarized, there are two impor-
tant particular cases.
Definition. The electric field is said to be linearly polarized if the phases of two or-
thogonal components of the field in Eq. (3.36) are the same, φ0x = φ0y .
In this case,

E(z, t) = (ax|E0x|+ ay|E0y|) cos(kz − ωt+ φ0) , (3.46)

and the electric field is always directed along the line making the angle

α = tan−1(E0y/E0x) (3.47)

with the x-axis as is shown in Fig. 3.7.
Definition. If the phases of the two orthogonal components in Eq. (3.37) differ by
π/2, and |E0x| = |E0y|, the wave is said to be circularly polarized.
In this case

E(z, t) = |E0|[ax cos(kz − ωt+ φ0)∓ ay sin(kz − ωt+ φ0)] . (3.48)

In a circularly polarized wave, the E has the same magnitude but is moving along
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Figure 3.8: Illustrating circular polarization.

the circle. In the case of “-” sign in Eq. (3.48), E moves counterclockwise around the
circle and the wave is left circularly polarized; for the “+” sign it is right circularly
polarized.
Example 3. 5. Determine the polarization of the electromagnetic wave E(x, t) =
(ayA− azB) sin(kx− ωt).
Solution. The wave is linearly polarized at the angle θ = tan−1(A/B) with the z-axis;
it propagates in the positive x-direction.

Consider the power flow associated with the plane wave, specified by the Poynting
vector, P = E × H. In general, both fields oscillate with rather high frequencies
such that a more sensible–and actually detectable–measure of the power flow is the
time-averaged Poynting vector, defined as

〈P(r)〉 =
1
T

∫ T

0

dtP(r, t), (3.49)

where T is the wave period. Using the fact that for any complex number, Re(z) =
(z + z∗)/2, we can rewriting Eq. (3.22) as

E =
1
2

[
E0e

j(k·r−ωt) + E∗
0e
−j(k·r−ωt)

]
; H =

1
2

[
H0e

j(k·r−ωt) + H∗
0e
−j(k·r−ωt)

]
,

(3.50)
We can obtain for the instantaneous Poynting vector the expression

P =
1
4

(E0 ×H∗
0 + E∗

0 ×H0)

+
1
2

[
(E0 ×H0)e2j(k·r−ωt) + (E∗

0 ×H∗
0)e

−2j(k·r−ωt)
]
. (3.51)

It follows from Eqs. (3.49) and (3.51) that the last two terms on the r.h.s. of Eq. (3.51)
average to zero as complex exponentials oscillate at twice the frequency and are aver-
aged over a full period of the wave. As a result, the average Poynting vector of any
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plane wave, regardless of its polarization, takes the form

〈P〉 =
1
2

Re(E0 ×H∗
0) . (3.52)

Example 3. 5. Determine the average Poynting vector of a plane wave H = (10ay−
20az) sin(ωt− 40x) A/m propagating in free space.
Solution. In free space, ω = kc = 40×3×108 = 12×109 rad/s. The magnetic field can
be written in the phasor form as H = Re{(10ay−20az)ej(π/2+kx−ωt)}, implying that
the plane wave is linearly polarized at the angle θ = − tan−1(2) to the y-axis propa-
gating along the x-axis, ak = ax. Here H0 = (10ay − 20az)ejπ/2. Using Eq. (3.35),
we obtain E0 = −η0[ax× (10ay−20az)]ejπ/2 = −η0(10az +20ay)ejπ/2. Note that
E0 ·H0 = 0 as should be. Thus, 〈P〉 = −η0[(10az + 20ay) × (10ay − 20az)]/2 =
0.25η0ax ' 94.25ax kW/m

2

Example 3.6. Show that the instantaneous Poynting vector of a circularly polar-
ized plane wave in free space is independent of either time or the propagation
distance.
Solution. For a circularly polarized plane wave, propagating in the positive z-direction,
say,

E = |E0|[ax cos(kz−ωt+φ0)±ay sin(kz−ωt+φ0)] = Re
[
E0(ax ∓ jay)ej(kz−ωt)

]
,

(3.53)
implying that

E0 = E0(ax ∓ jay). (3.54)

Applying Eq. (3.33), with Eq. (3.54), we obtain

H0 =
(az ×E0)

η0
=
E0

η0
(ay ± jax).

It follows that

H = Re
[
E0

η0
(ay ± jax)ej(kz−ωt)

]
=
|E0|
η0

[ay cos(kz − ωt+ φ0)∓ ax sin(kz − ωt+ φ0)]. (3.55)

Using Eqs. (3.53) and (3.55), we obtain

P = E×H =
|E0|2

η0
[(ax × ay) cos2(kz − ωt+ φ0)

− (ay × ax) sin2(kz − ωt+ φ0)] = az
|E0|2

η0
. (3.56)

40



3.4 Plane waves in lossy media
We begin by making two assumptions: First, we assume that neither ε nor σ is fre-
quency dependent, and second, we assume that electromagnetic wave absorption comes
only from the ohmic losses, implying that ε is purely real. The constitutive relations
imply then

D = εE, B = µH, (3.57)

and
J = σE. (3.58)

With these two assumptions and constitutive relations, the Maxwell equations in the
absence of free charges, ρv = 0, state

∇ ·E = 0, (3.59)

∇ ·H = 0, (3.60)

∇×E = −µ∂H
∂t

, (3.61)

∇×H = σE + ε
∂E
∂t
. (3.62)

We seek a solution to Eqs. (3.59) through (3.62) in the form of an inhomogeneous
plane wave propagating in the positive z-direction

E(z, t) = Re{E0e
−γz+jωt)}, H(z, t) = Re{H0e

−γz+jωt)}. (3.63)

Here γ is, in general, a complex propagation constant with the imaginary part de-
scribing the amplitude attenuation of the wave as we shall see. Hence the name in-
homogeneous plane wave. We can now introduce the complex wave vector Γ such
that

Γ = azγ, γz = Γ · r. (3.64)

On substituting from Eq. (3.63) into Eqs. (3.59) through (3.62), and using Eq. (3.64),
together with the properties established in Exercise 3.3, we obtain

az ·E0 = 0; az ·H0 = 0, (3.65)

and
γ(az ×E0) = jµωH0, (3.66)

−γ(az ×H0) = σE0 + jεωE0 = jω

(
ε− jσ

ω

)
E0. (3.67)

Eliminating H0 from Eqs. (3.66) and (3.67) we obtain

γ2[az × (az ×E0)] = µεeffω
2E0. (3.68)

Here we introduced the notation

εeff = ε− jσ

ω
. (3.69)
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With the help of Eq. (3.65) by analogy with the free space case, we arrive at the disper-
sion relation for the electromagnetic waves in lossy media

γ2 = −µω2εeff = −ω2εµ

(
1− jσ

εω

)
. (3.70)

The latter can be represented as

γ = (α+ jβ) , (3.71)

where

β = ω

√√√√εµ

2

(√
1 +

σ2

ε2ω2
+ 1

)
, (3.72)

and

α = ω

√√√√εµ

2

(√
1 +

σ2

ε2ω2
− 1

)
, (3.73)

as you worked out in your assignment 1.
Further, the electric and magnetic field amplitudes are related as

E0 = −η(az ×H0), (3.74)

and

H0 =
(az ×E0)

η
, (3.75)

where η is a complex impedance of the lossy medium, defined as

η =

√
µ/ε

1− jσ
εω

. (3.76)

The latter can be written in the polar form–see the solution to Example 1. 6–as

η = |η|ejθη , (3.77)

where

|η| =
√
µ/ε[

1 +
(

σ
εω

)2]1/4
, tan 2θη =

σ

εω
. (3.78)

Consider now a particular case of a linearly polarized in the x-direction plane
wave which propagates in the positive z-direction. In this case in view of Eqs. (3.63),
(3.71), (3.77), and (3.75), we obtain for the electric and magnetic fields

E(z, t) = axE0e
−αz cos(βz − ωt) , (3.79)
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Figure 3.9: Inhomogeneous plane wave propagating in a lossy medium.

and

H(z, t) = ay
E0

|η|
e−αz cos(βz − ωt− θη) . (3.80)

It is seen from Eqs. (3.87) and 3.88) that in a lossy medium,

• The electric and magnetic field are harmonic waves with exponentially decaying
amplitudes;

• The magnetic field lags behind the electric field in phase by θη.

The field attenuation is measured in nepers per meter (Np/m); and attenuation of 1Np
implies the field amplitude is reduced e times. The wave power loss of 1 neper can be
expressed in decibels as

1 Np = 20 log10 e = 8.686 dB.

Next, let us evaluate the magnitude ratio of conducting and displacement currents
generated by the wave on propagation in the medium

Jc = σE; Jd = ε
∂E
∂t

= jεωE. (3.81)

Thus,
|Jc|
|Jd|

=
σ

εω
≡ tan θ . (3.82)

Eq. (3.82) defines the so-called loss tangent. Note that the loss angle θ is related to the
aforementioned phase lag angle θη viz.,

θ = 2θη. (3.83)
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Figure 3.10: Illustrating the loss angle concept.

Depending on the size of the loss angle, two interesting cases emerge.
Lossless dielectrics, σ = 0. In this case, one can set σ equal to zero in all the above
expressions. We arrive at

E0 = −η(ak ×H0) , (3.84)

and

H0 =
(ak ×E0)

η
, (3.85)

where
β = ω

√
εµ , η =

√
µ/ε . (3.86)

In particular, for a linearly polarized plane wave propagating in the z-direction, we
obtain

E(z, t) = axE0 cos(βz − ωt), (3.87)

and
H(z, t) = ay

E0

|η|
cos(βz − ωt). (3.88)

The wave is simply a plane wave of the wavelength

λ = 2π/β , (3.89)

propagating with no loss and phase velocity

vp =
ω

β
=

c
√
µrεr

. (3.90)

Good conductors, σ/εω � 1. In this case, we can get approximately,

α = β =
√
µσω

2
=

1
δ
, (3.91)
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and

η =
(1 + j)
δσ

, θη = π/4 . (3.92)

Here we introduced the skin depth by the expression

δ =
√

2
µσω

. (3.93)

Thus, for a linearly polarized plane wave along the x-axis, say, we get

E(z, t) = axE0e
−z/δ cos(βz − ωt), (3.94)

and
H(z, t) = ay

E0

η
e−z/δ cos(βz − ωt− π/4). (3.95)

For good conductors, σ → ∞, the skin depth is quite small. At the microwave fre-
quencies, for instance, δ ranges from 10−4 mm to 10−2 mm; the fields do not penetrate
much into good conductors at the microwave or higher frequencies.
Example 3. 7. In a lossless nonmagnetic medium with εr = 4, a uniform plane
wave, E = 8 cos(ωt − βz)ax − 6ay sin(ωt − βz) V/m propagates with the fre-
quency of 30 MHz. Determine β, vp, λ, η and H.
Solution. β = ω

√
µε =

√
εrω/c = 2πν

√
εr/c = 2π/5m/s. It follows by defi-

nitions that λ = 2π/β = 5m; vp = ω/β = 1.5× 108m/s, and η =
√
µ/ε =

η0/
√
εr = η0/2. Next, E = Re{E0e

j(ωt−βz)}, where E0 = 8ax + 6jay . Thus, H0 =
(az × E0)/η = (16/η0)ay − (12j/η0)ax. It follows that H = Re{H0e

j(ωt−βz)} =
(16/η0) cos(ωt− βz)ay + (12/η0) sin(ωt− βz)ax.

3.5 Group velocity
Let us consider a dispersive nonmagnetic medium with ε = ε(ω). We assume that all
fields have a harmonic time dependence,

E(r, t) = Re[Eω(r)e−jωt] H(r, t) = Re[Hω(r)e−jωt]. (3.96)

The constitutive relations at frequency ω take the form

Dω = ε(ω)Eω, (3.97)

and
Bω = µ0Hω. (3.98)

Maxwell’s equations for the time-harmonic components are obtained from Maxwell’s
equations in the space-time representation with the replacement ∂t → −jω, resulting
in

∇ ·Eω = ρω/ε(ω). (3.99)
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∇ ·Hω = 0, (3.100)

∇×Eω = jωµ0Hω, (3.101)

and
∇×Hω = Jω − jωε(ω)Eω. (3.102)

We now explore a generic linearly polarized wave packet evolution in a dispersive
medium with no free charges and currents, ρω = 0 and Jω = 0. Phasor Maxwell’s
equations reduce then to

∇ ·Eω = 0. (3.103)

∇ ·Hω = 0, (3.104)

∇×Eω = jωµ0Hω, (3.105)

and
∇×Hω = −jωε(ω)Eω. (3.106)

One can take the curl of Eq. (3.105) and use (3.106) to eliminate the magnetic field to
yield

∇× (∇×Eω) = ω2µ0ε(ω)Eω. (3.107)

We look for a solution to Eq. (3.107) describing a linearly polarized wave packet, prop-
agating in the positive z-direction:

E(z, t) = ax

∫ ∞

−∞
dβ

∫ ∞

−∞
dω E(β, ω − ωc) ej(βz−ωt). (3.108)

Here we introduced the carrier frequency ωc and the envelope of the wave packet,
E(β, ω − ωc), centered around ωc. On substituting from Eqs. (3.108) into Eq. (3.107),
we obtain the relation

[β2 − ω2µ0ε(ω)]E(β, ω − ωc) = 0. (3.109)

Note that as β and ω are treated as independent variables, the only way Eq. (3.109) can
be satisfied for all pairs of β and ω is if

E(β, ω − ωc) = E0(ω − ωc)δ[β2 − ω2µ0ε(ω)]. (3.110)

Here δ is a Dirac delta function. We recall the following property of the δ function of
an arbitrary argument f(x)

δ[f(x)] =
∑

s

1
|f ′(xs)|

δ(x− xs), (3.111)

where {xs} are the roots of the function f(x), and the prime denotes a derivative. It
follows from Eqs. (3.110) and (3.111) that

E(β, ω) = E0+(ω−ωc)δ[β−ω
√
µ0ε(ω)]+E0−(ω−ωc)δ[β+ω

√
µ0ε(ω)] (3.112)

46



As we assume that the wave packet is forward-propagating,

E0−(ω − ωc) = 0. (3.113)

The dispersion relation between β and ω follows from Eqs (3.112) and (3.113):

β(ω) = ω
√
µ0ε(ω). (3.114)

It follows at once from Eqs. (3.112), (3.113) and (3.108) that

E(z, t) = ax

∫ ∞

−∞
dω E0(ω − ωc)ej[β(ω)z−ωt]. (3.115)

Here the propagation constant satisfies the dispersion relation (3.114).





 

ℰ∘ 

 

Figure 3.11: Narrow-band wave envelope.

Assume now that the wave packet has a carrier frequency ωc far from any medium
resonances and its bandwidth ∆ω is sufficiently narrow such that ∆ω � ωc. In this
approximation–referred to as the slowly-varying envelope approximation (SVEA)–a
“fast” carrier modulates a “slow” envelope as sketched in Fig. 3.12. Under the circum-
stances, we can expand β in a Taylor series around ωc and keep only first two terms of
the expansion:

β(ω) ' βc + β′c(ω − ωc). (3.116)

Here βc ≡ β(ωc) and β′c ≡ β′(ωc). Thus,

E(z, t) = axe
j(βcz−ωct)

∫ ∞

−∞
dω E0(ω − ωc)e−j(ω−ωc)(t−β′

cz). (3.117)

and on introducing the new variable, ω′ = ω − ωc in Eq. (3.117), we obtain

E(z, t) ' axe
j(βcz−ωct)

∫ ∞

−∞
dω′E0(ω′)e−jω′(t−β′

cz). (3.118)

It can be inferred from Eq. (3.118) using the shifting property of Fourier transforms
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slow envelope
fast carrier

Figure 3.12: Fast carrier and the slow envelope modulated by the carrier.

Figure 3.13: Distortionless propagation of the wave packet with the group velocity.

that at the adopted level of approximation, the wave packet profile remains unchanged;
it simply propagates as a whole to the right with the speed vg , i. e.,

E(z, t) = E(0, t− β′cz) = E(0, t− z/vg). (3.119)

Here the group velocity is introduced viz.,

vg =
1
β′c

=
1

dβ(ω)
dω

∣∣∣∣∣
ω=ωc

=
dω

dβ

∣∣∣∣
ω=ωc

. (3.120)

At the same time, the carrier propagates with the phase velocity

vp =
ωc

β(ωc)
. (3.121)
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Note that we can define the phase velocity of any monochromatic component with the
frequency ω within the envelope as

vp =
ω

β(ω)
. (3.122)

Note also that as long as the phase velocity is just a velocity of a phase of the wave
it can take on any value, even greater than the speed of light.
Example 3. 8. The ionosphere of earth contains a number of free electrons such
that it can be modeled as a nonmagnetic medium with a Drude-type permittivity,
ε(ω) = ε0(1− ω2

p/ω
2). Show that the phase velocity in the ionosphere exceeds the

speed of light in vacuum.
Solution. By definition,

vp =
ω

β(ω)
=

1√
µ0ε(ω)

=
c√

1− ω2
p/ω

2
≥ c.

Example 3. 9. Show that the group and phase velocities are related as

vg = vp + β
dvp

dβ
,

or
vg =

vp

1− ω
vp

dvp

dω

.

Solution. First, recall that vp = ω/β implying that ω = βvp or β = ω/vp. Eliminating
ω, we obtain

vg =
dω

dβ
=

d

dβ
(βvp) = vp + β

dvp

dβ
.

Alternatively, eliminating β, we get

vg =
1

dβ(ω)
dω

=
1

v−1
p − ωv−2

p
dvp

dω

=
vp

1− ω
vp

dvp

dω

. (3.123)

Note that the group velocity is related to the envelope propagation. The envelope
carries the wave packet energy and its propagation velocity can never exceed the speed
of light in vacuum. It also follows from Eq. (3.123) that

• dvp

dω = 0 ⇒ vp = vg , there is no dispersion;

• dvp

dω < 0 ⇒ vg < vp, dispersion is normal;

• dvp

dω > 0 ⇒ vg > vp, dispersion is anomalous.
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3.6 Reflection of plane waves at normal incidence
We consider a plane electromagnetic wave propagating along the z-axis in a dielectric
nonconducting medium with the constitutive parameters ε1 and µ1 (medium 1). The
wave is impinged normally on the interface z = 0 separating the medium from a con-
ducting medium characterized by ε2, µ2 and σ. The situation is schematically depicted
in Fig. 3.14. As the incident wave is partially reflected back into medium 1 and par-
tially transmitted into medium 2, there will be reflected and incident waves in medium
1 and a transmitted wave in medium 2.

t
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221
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Figure 3.14: Normal incidence of a plane wave onto an interface separating transparent
and lossy media.

We can now write down the fields in the media. Hereafter, we are going to write
the fields in the complex form implying that the real part can be taken at the end of all
calculations. First, there is an incident wave in medium 1:

Ei(z, t) = E0ie
j(kiz−ωit), (3.124)

and
Hi(z, t) = H0ie

j(kiz−ωit), (3.125)

where E0i and H0i are complex amplitudes of the electric and magnetic fields and βi

is the propagation constant. Assuming, for simplicity, that the incident field is linearly
polarized along the x-axis, we get

E0i = E0iax, (3.126)

and since the for incident wave ki = kiaz , we obtain

H0i =
(az ×E0i)

ηi
= ay

E0i

ηi
. (3.127)

It can be inferred from Eqs. (3.124) through (3.127) that

Ei(z, t) = axE0ie
j(kiz−ωit), (3.128)

50



and
Hi(z, t) = ay

E0i

ηi
ej(kiz−ωit). (3.129)

By the same token, for the reflected wave,

Er(z, t) = axE0re
−j(krz+ωrt), (3.130)

and
Hr(z, t) = −ay

E0r

ηr
e−j(krz+ωrt). (3.131)

The minus sign in Eq. (3.131) is because the reflected wave propagates in the negative
z-direction, kr = −kraz . Also we have to flip the direction of the magnetic field if we
assume that the linearly polarized electric field does not change its polarization upon
reflection and E, H and k form a right-hand system of mutually orthogonal vectors.
The transmitted waves in medium 1 can be expressed in a similar fashion as

Et(z, t) = axE0te
j(γtz−ωtt), (3.132)

and
Ht(z, t) = ay

E0t

ηt
ej(γtz−ωtt). (3.133)

Next, the boundary conditions for the tangential field components at the interface
z = 0 state

E1τ |z=0 = E2τ |z=0, H1τ |z=0 = H2τ |z=0. (3.134)

Since Eq. (3.134) must be satisfied at any instant of time we stipulate that

ej(kiz−ωit)|z=0 = e−j(krz+ωrt)|z=0 = ej(γtz−ωtt)|z=0. (3.135)

It follows at once from Eq. (3.135) that

ωi = ωr = ωt = ω. (3.136)

Eq. (3.133), in turn, leads to

ki = kr = k1 = ω
√
ε1µ1, (3.137)

and
ηi = ηr = η1 =

√
µ1/ε1, (3.138)

as well as
γt = γ2 = β2 + jα2, (3.139)

and

ηt = η2 =

√
µ2/ε2

1− jσ
ε2ω

. (3.140)

The boundary conditions then imply

E0i + E0r = E0t (3.141)
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and
E0i − E0r

η1
=
E0t

η2
. (3.142)

Solving Eqs. (3.141) and (3.142), we obtain for the complex reflection and transmission
coefficients, r and t, the equations

r ≡ E0r

E0i
=
η2 − η1
η1 + η2

, (3.143)

and

t ≡ E0t

E0i
=

2η2
η1 + η2

. (3.144)

Note that
1 + r = t. (3.145)

Example 3. 10. Show that the average Poynting vectors on both sides of the inter-
face are equal.
Solution. Recall that 〈P〉 = 1

2Re(E0 ×H∗
0). It follows that

〈P1〉 = 〈Pi〉+ 〈Pr〉 =
1
2

(
|E0i|2

η1
ax × ay

)
− 1

2

(
r2
|E0i|2

η1
ax × ay

)
=

1
2
(1− r2)

|E0i|2

η1
az =

2η2|E0i|2

(η1 + η2)2
. (3.146)

By the same token,

〈P2〉 = 〈Pt〉 =
1
2
t2|E0i|2

η2
az =

2η2|E0i|2

(η1 + η2)2
, (3.147)

Thus, the r.h.s of Eqs. (3.146) and (3.147) are equal which is a consequence of the
energy conservation, of course.

Let us now examine important particular cases when medium 2 is a perfect dielec-
tric, σ = 0, or a perfect conductor, σ → ∞. In the first case, both impedances are
real and there are transmitted and reflected homogeneous plane waves. In the second
case, η2 → 0, implying that E0t = 0, H0t = 0 and E0r = −E0i. That is all power is
reflected back into medium 1. This situation is illustrated in Fig. 3.15. Thus,

Ei(z, t) = axE0ie
j(k1z−ωt), (3.148)

Hi(z, t) = ay
E0i

ηi
ej(k1z−ωt). (3.149)

for the incident wave, and

Er(z, t) = −axE0ie
−j(k1z+ωt), (3.150)

Hr(z, t) = ay
E0i

η1
e−j(k1z+ωt). (3.151)
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Figure 3.15: Normal incidence of a plane wave onto an interface separating a dielectric
and a perfect conductor.

for the reflected one. The total electric and magnetic fields in medium 1 are then

E1 = Re(Ei + Er) = 2ax|E0i| sin k1z sinωt , (3.152)

and

H1 = Re(Hi + Hr) = 2ay
|E0i|
η1

cos k1z cosωt . (3.153)

These are standing waves because the wave does not travel, but simply oscillates sepa-
rately in space and time.
Example 3.11. Show that standing waves do not transmit any power.
Solution. Let us work out the time-averaged power flow associated with a standing
wave.

〈P〉 = 〈E×H〉 = az
|E0i|2

η1
sin 2k1z〈 sin 2ωt〉 = 0,

because sin 2ωt yields zero upon averaging over a wave period T = 2π/ω.
Example 3. 12. A right-hand circularly polarized wave, propagating in the posi-
tive z-direction is normally incident on a perfect conductor wall z = 0. Determine
(a) the polarization of the reflected wave and (b) the induced current on the con-
ducting wall.
Solution. (a) The incident wave can be written in the phasor form as Ei = Re[E0(ax +
jay)ej(kz−ωt)] = E0[cos(kz − ωt)ax − sin(kz − ωt)ay]. The reflected wave is then
Er = Re[E0(ax + jay)e−j(kz+ωt+π)] = E0[cos(kz+ωt+ π)ax + ay sin(kz+ωt+
π)ay]. Thus, the reflected wave is left-hand circularly polarized wave propagating in
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the negative z-direction. At the interface, dropping the harmonic dependence,

Hi =
E0

η
az × (ax + jay) =

E0

η1
(ay − jax), (3.154)

and
Hr =

E0

η
az × (ax + jay) =

E0

η1
(ay − jax). (3.155)

The boundary conditions imply,

Js = −az × (Hi + Hr) = 2
E0

η1
(ax − jay). (3.156)

3.7 Reflection of plane waves at oblique incidence
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Figure 3.16: Illustrating Snell’s law for oblique incidence of a plane wave.

We now explore refraction and reflection of plane electromagnetic waves at a flat
interface of two lossless media. Here we assume that the interface is flat with its normal
being along the z-axis. The boundary conditions at the flat interface z = 0 should hold
at any point in the xy-plane and at any instant of time t, implying that

ej(ki·r−ωit)|z=0 = ej(kr·r−ωrt)|z=0 = ej(kt·r−ωtt)|z=0. (3.157)

54



It follows at once from Eq. (3.157) that

ωi = ωr = ωt = ω. (3.158)

Let us further write down the wave vectors of the incident, reflected and transmitted
waves, assumed to be confined to the xz-plane, as

ki = k1(sin θiax + cos θiaz), (3.159)

kr = k1(sin θrax − cos θraz), (3.160)

and
kt = k2(sin θtax + cos θtaz), (3.161)

where
ks = ω

√
εsµs = ωns/c; s = 1, 2.

Here
ns =

√
εsµs/ε0µ0 , (3.162)

is a refractive index in the sth medium. We can then infer from Eqs. (3.157) and (3.159) –
(3.161) that the incidence and reflection angles must be the same,

θi = θr = θ1; θt = θ2, (3.163)

and the well-known Snell law for the incidence and transmission angles must hold

n1 sin θ1 = n2 sin θ2 , (3.164)

There are two possible polarizations: transverse magnetic (TM) or parallel and trans-
verse electric (TE) or perpendicular which we are treating separately.

3.7.1 Transverse magnetic (TM) or parallel polarization
Consider first the TM case. The magnetic field is assumed to be polarized along y-axis,
H0 = H0ay . The relevant Maxwell equations, corresponding to Fig. 3.17, are

ks ·H0s = 0; ks ·E0s = 0. (3.165)

and
E0s = −ηs(as ×H0s). (3.166)

Here the indices 1 and 2, (s = 1, 2), correspond to the media below and above the inter-
face, respectively, and as = ks/ks. It follows from Maxwell’s equations, Eqs. (3.165)
and (3.166) that the electric and magnetic fields can be represented as

Hi(r, t) = H0iay e
j(ki·r−ωt)

Ei(r, t) = η1H0i(ax cos θ1 − az sin θ1) ej(ki·r−ωt), (3.167)
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Figure 3.17: Oblique incidence of a TM plane wave.

for the incident wave;

Hr(r, t) = −H0ray e
j(kr·r−ωt)

Er(r, t) = η1H0r(ax cos θ1 + az sin θ1) ej(kr·r−ωt), (3.168)

for the reflected wave and

Ht(r, t) = H0tay e
j(kt·r−ωt)

Et(r, t) = η2H0t(ax cos θ2 − az sin θ2) ej(kt·r−ωt), (3.169)

for the transmitted wave. Here we assumed that a linearly polarized plane wave does
not change its polarization upon reflection. As a result to keep the correct mutual
orientation of E, k and H we must assume that H changes its direction upon reflection,
hence the minus sign in front of Hr in Eq. (3.168).

The boundary conditions for the tangential components of the fields across the
interface state

H0i −H0r = H0t (3.170)

and
η1H0i cos θ1 + η1H0r cos θ1 = η2H0t cos θ2. (3.171)

It then follows from Eqs. (3.170) and (3.171) that

H0r =
η2 cos θ2 − η1 cos θ1
η1 cos θ1 + η2 cos θ2

H0i, (3.172)
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and
H0t =

2η1 cos θ1
η1 cos θ1 + η2 cos θ2

H0i. (3.173)

Using (3.166) we arrive at the expressions for the electric fields in the form

E0i = η1H0i, E0r = η1H0r, E0t = η2H0t. (3.174)

Finally, the complex reflection and transmission coefficients can be represented as

rTM = r‖ =
E0r

E0i
=
η2 cos θ2 − η1 cos θ1
η1 cos θ1 + η2 cos θ2

, (3.175)

and

tTM = t‖ =
E0t

E0i
=

2η2 cos θ1
η1 cos θ1 + η2 cos θ2

. (3.176)

Sometimes, the real transmission and reflection coefficients for energy fluxes are intro-
duced as well by expressions

RTM ≡ |rTM |2, TTM ≡ |tTM |2. (3.177)

Equations (3.175) and (3.176) are celebrated Fresnel formulas for the TM case.
As a limiting case, let us consider the case of normal incidence, θ1 = θ2 = 0. It

then follows from Eqs. (3.175) – (3.177) that

rn =
η2 − η1
η1 + η2

, tn =
2η2

η1 + η2
. (3.178)

Another instructive particular case corresponds to the Brewster angle θB at which
rTM = 0, i. e., there is no reflected TM wave. In this case,

rTM = 0 =⇒ η2 cos θ2 = η1 cos θB ,

and using Snell’s law, we arrive at

η2
2 [1− sin2 θB(µ1ε1/µ2ε2)] = η2

1(1− sin2 θB).

A simple algebra then leads to

sin θB =

√
1− µ2ε1/µ1ε2
1− (ε1/ε2)2

. (3.179)

In a practically important case of nonmagnetic media, µ1 = µ2 = µ0,

tan θB = n2/n1 . (3.180)
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Figure 3.18: Oblique incidence of a TE plane wave.

3.7.2 Transverse electric (TE) or perpendicular polarization
In the TE case, E0 = E0ay and the magnetic field is given by

H0s =
(as ×E0s)

ηs
; s = 1, 2. (3.181)

We thus obtain for the incident, reflected and transmitted fields the expressions

Ei(r, t) = E0iay e
j(ki·r−ωt)

Hi(r, t) =
E0i

η1
(−ax cos θ1 + az sin θ1) ej(ki·r−ωt), (3.182)

Er(r, t) = E0rey e
j(kr·r−ωt)

Hr(r, t) =
E0r

η1
(ax cos θ1 + az sin θ1) ej(kr·r−ωt), (3.183)

and

Et(r, t) = E0tay e
j(kt·r−ωt)

Ht(r, t) =
E0t

η2
(−ax cos θ2 + az sin θ2) ej(kt·r−ωt). (3.184)

The continuity of tangential components of electric and magnetic fields across the in-
terface leads to

E0i + E0r = E0t, (3.185)
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and (
−E0i

η1
+
E0r

η1

)
cos θ1 = −E0t

η2
cos θ2. (3.186)

Solving the last pair of equations, we arrive at the complex reflection and transmission
coefficients in the form

rTE = r⊥ =
E0r

E0i
=
η2 cos θ1 − η1 cos θ2
η1 cos θ2 + η2 cos θ1

, (3.187)

tTE = t⊥ =
E0t

E0i
=

2η2 cos θ1
η1 cos θ2 + η2 cos θ1

. (3.188)

The Brewster angle is determined by the condition,

rTE = 0, (3.189)

implying that
η2 cos θB = η1 cos θ2, (3.190)

or Using the Snell law, we can obtain the equation

η2
2(1− sin2 θB) = η1(1− sin2 θ1). (3.191)

Using the Snell law, we can obtain the expression

sin θB =

√
1− µ1ε2/µ2ε1
1− (µ1/µ2)2

. (3.192)

However, in virtually any practical case, the media under consideration are nonmag-
netic, µ1 = µ2. It then follows at once that Eq. (3.192) can never be satisfied resulting
in the absence of the Brewster angle for the TE polarization.
Example 3. 13. A plane EM wave propagating in a lossless dielectric nonmag-
netic medium with εr = 9, which occupies the half-space z < 0, is impinged on
a plane interface z = 0 separating the medium from the other lossless nonmag-
netic medium with εr = 9/2. The magnetic field of the incident wave is given,
H(r, t) = ay cos(109t− ax− a

√
3z). Determine (a) the angle of incidence, (b) the

transmission angle, (c) the magnitude of a, (d) the wave polarization (TE/TM),
and (e) the incident and reflected fields Ei(r, t) and Er(r, t).
Solution. (a) First, ki = aax + a

√
3az . The wave propagates at the angle θ1 to the

z axis such that tan θ1 = 1/
√

3. Hence, sinθ1 = 1/2, implying that θi = θ1 = π/6
from the Formula Sheet table. (b) Using Snell’s law, sin θ2 =

√
2/2, implying that

θ2 = π/4. (c) Next, k1 = ω
√
ε1µ1 = ω

√
εr1/c. Thus 2a = 10 ⇒ a = 5. (d)

H is normal to the plane of incidence, implying that the wave is TM polarized. (e)
Hi = Re[H0ie

j(ωt−k·r)], where H0i = ay . Thus, E0i = −η1[aki × H0], where
aki = 1

2 (ax +
√

3az). It follows that

E0i = − η0
2
√
εr1

[(ax +
√

3az)× ay] = 20π(
√

3ax − az),
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which is purely real. Therefore,

Ei(r, t) = 20π(
√

3ax − az) cos(109t− 5x− 5
√

3z).

Using the expression for the TM reflection coefficient with η1 = η0/3, η2 = η0
√

2/3,
cos θ1 =

√
3/2 and cos θ2 =

√
2/2, we obtain

rTM =
2−

√
3

2 +
√

3
.

The reflected field is then

Er(r, t) = 20π
2−

√
3

2 +
√

3
(
√

3ax − az) cos(109t− 5x+ 5
√

3z).

3.7.3 Total internal reflection
Consider now the case of total internal reflection, n1 > n2. It follows from the Snell
law that sin θ2 = (n1/n2) sin θ1, implying that for any angle greater than a certain
critical angle,

θc = sin−1(n2/n1) , (3.193)

the sine of the angle is greater than unity. The latter implies that θ2 becomes complex
with a purely imaginary cosine such that

cos θ2 = j

√
n2

1

n2
2

sin2 θ1 − 1. (3.194)

We assume, for simplicity that the medium is nonmagnetic. It then readily follows
from Eqs. (3.175) and (3.194) that

rTM =
n1 cos θ2 − n2 cos θ1
n1 cos θ2 + n2 cos θ1

. (3.195)

It can then be inferred from Eqs. (3.194) and (3.195) that the reflection amplitude of a
totally reflected TM wave can be expressed as

rTM = e−2jφTM , (3.196)

where the phase is given by

φTM = tan−1

n1

√
n2

1 sin2 θ1 − n2
2

n2
2 cos θ1

 . (3.197)
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Using Eq. (3.194) in Eqs. (3.173) and (3.174), we can derive the expressions for
complex amplitudes of the transmitted electric and magnetic fields as

E0t(z) =
2E0i(n2

1/n2) cos θ1

n2 cos θ1 + jn1

√
n2

1
n2

2
sin2 θ1 − 1

[
−az sin θ1 + jax

(
n2

n1

)√
n2

1

n2
2

sin2 θ1 − 1

]

× exp

(
−k2z

√
n2

1

n2
2

sin2 θ1 − 1

)
, (3.198)

and

H0t(z) = ay
2n2H0i cos θ1

n2 cos θ1 + jn1

√
n2

1
n2

2
sin2 θ1 − 1

× exp

(
−k2z

√
n2

1

n2
2

sin2 θ1 − 1

)
. (3.199)

Next, let us determine the magnitude and direction of the energy flow specified by the
time-averaged Poynting vector,

〈Pt(z)〉 = 1
2Re[E0t(z)×H∗

0t(z)]. (3.200)

We obtain, after some algebra, the following result

〈Pt(z)〉TM =
axn

2
1|E0i|2 sin 2θ1 cos θ1

η1

[
n2

2 cos2 θ1 + n2
1

(
n2

1
n2

2
sin2 θ1 − 1

)] exp

(
−2k2z

√
n2

1

n2
2

sin2 θ1 − 1

)
.

(3.201)
It can be concluded from Eq. (3.201) that the energy of the wave incident at an angle
greater than the total internal reflection angle does not flow into the less optically dense
medium. Rather, it propagates along the interface separating the two media, exponen-
tially decaying in the direction normal to the interface.

By analogy with the TM case derivation, the reflection amplitude for total internal
reflection of the TE polarization is given by

rTE = e−2jφTE , (3.202)

where

φTE = tan−1


√
n2

1 sin2 θ1 − n2
2

n1 cos θ1

 . (3.203)

The corresponding expression for the Poynting vector is

〈Pt(z)〉TE =
axn

3
1|E0i|2 sin 2θ1 cos θ1
η0(n2

1 − n2
2)

exp

(
−2k2z

√
n2

1

n2
2

sin2 θ1 − 1

)
. (3.204)
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Chapter 4

Quasi-static fields

4.1 Quasi-static approximation
We consider time harmonic electromagnetic fields

E(r, t) = Eω(r)e−jωt, (4.1)

and
H(r, t) = Hω(r)e−jωt. (4.2)

Assuming the he medium is linear and isotropic, and nonmagnetic, but not necessarily
homogeneous, we will have the constitutive relations for the harmonic components of
the electric and magnetic flux and current densities as

Dω(r, ω) = ε(r, ω)Eω(r) Bω(r) = µ0Hω(r), (4.3)

and
Jω(r, ω) = σ(r, ω)Eω(r). (4.4)

With the aid of Eqs. (4.1) through (4.3), we obtain the Maxwell equations

∇ · [ε(r, ω)Eω] = 0 , (4.5)

∇ ·Hω = 0 , (4.6)

∇×Eω = jωµ0Hω , (4.7)

and
∇×Hω = σ(r, ω)Eω − jωε(r, ω)Eω . (4.8)

The quasi-static situation arises in two guises: the “traditional” (circuit theory) and
“modern” (near-field). In particular, if one introduces a characteristic system size L,
the quasi-static approximation is relevant whenever the phase an electromagnetic wave
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picks up on traversing the system is small compared to 2π, that is kL � 2π, which is
synonymous with the following

νL

c
� 1 . (4.9)

The criterion (4.9) works at sufficiently low frequencies, below 10 MHz, say, for typical
circuit architectures of a few-centimeter to few-tens-of-centimeter sizes. Indeed, take,
for example, L ' 30 cm and ν ' 10 MHz, νL/c ' ×107×30/3×1010 ' 10−2 � 1.
This situation takes place in the low-frequency circuit theory. Another possibility arises
whenever a system size is actually very small. For instance, for nanoscale systems,
L ' 10−9 m, (1 nm) even at optical frequencies ν ' 3× 1014 Hz, λ = c/ν ∼ 10−6 m
(1µm) the criterion (4.9) holds and it can be rewritten as

L

λ
� 1 . (4.10)

Regardless of the actual physical situation, the quasi-static limit can be formally ob-
tained by considering the limit of ω = 0. In this case, Eqs. (4.5) to (4.8) reduce to

∇ · [εs(r)Es] = 0 , (4.11)

∇ ·Hs = 0 , (4.12)

∇×Es = 0 , (4.13)

∇×Hs = σs(r)Es . (4.14)

and the actual fields E and H are given in terms of the static fields Es and Hs as

E = Ese
−jωt, H = Hse

−jωt , (4.15)

and the static conductivity σs(r) = σ(r, 0) is introduced. The permittivity must also
be replaced with its dc limiting value, εs(r) = ε(r, 0).
Implication. In a quasi-static limit, spatial distributions of time-harmonic electric
and magnetic fields are those dictated by electrostatics.

Since the static limit plays such an important role for low-frequency (or nanoscale)
time-harmonic electromagnetic fields, we examine it more closely. Hereafter, we will
drop the subscript “s”. It follows at once from Eq. (4.13) and the fact that curl of
a gradient is equal to zero that the electrostatic field can be expressed in terms of a
gradient of a scalar function which will refer to as the scalar potential V as

E = −∇V , (4.16)

where the gradient can be expressed in the Cartesian coordinates as

∇V = ax
∂V

∂x
+ ay

∂V

∂y
+ az

∂V

∂z
. (4.17)
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The minus sign in Eq. (4.16) is a matter of convention as we will see shortly. To provide
a geometrical interpretation of the gradient, we examine the scalar field change as one
moves from one point in space to another infinitesimally closed point. The situation is
illustrated in Fig. 4.1. It follows that

x

y

z

),,( zyxA

r


rdr




rd


o

),,( dzzdyydxxB 

Figure 4.1: Illustrating the evaluation of the gradient.

dV =
∂V

∂x
dx+

∂V

∂y
dy +

∂V

∂z
dz. (4.18)

On the other hand the infinitesimal distance between the points is

dr = axdx+ aydy + azdz. (4.19)

It can be inferred from Eqs. (4.17) through (4.19) that

dV = ∇V · dr = |∇V ||dr| cosφ, (4.20)

where φ is the angle between the gradient vector and the displacement vector dr.
Consider now an equipotential surface on which V = const. For any two points
on the equipotential surface, dV = 0. It then follows from Eq. (4.20) that the only way
for the r.h.s to be equal to zero for any dr, is cosφ = 0 implying that ∇V must be
orthogonal to any displacement vector lying on the surface. Hence the gradient must
be normal to the surface.
Geometrical interpretation of the gradient I. The gradient of a scalar potential is
always normal to the surface.
As a result gradient can be used to determine a unit normal to a surface, see Fig 4.2.
In the electromagnetic context, the electrostatic fields are always normal to the corre-
sponding equipotential surfaces as is illustrated in Fig. 4.3.
Example. 4. 1. Find a unit normal to the surface y = x2 at the point (2, 4, 1).
Solution. The equation of the surface is y − x2 = 0. One can then introduce a scalar
field Φ(x, y) = y − x2 which is constant on the surface. Working out the gradient
of Φ at (2, 4, 1) gives, ∇Φ = −2xax + ay = −4ax + ay . The unit normal is then
an = ±∇Φ/|∇Φ| = ±(−4ax/

√
17 + ay/

√
17).

Next, dV is maximal in the direction in which ∇V is parallel to dr. It can then be
inferred that
Geometrical interpretation of the gradient II. Gradient of a scalar field points to
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Figure 4.2: Illustrating the geometrical interpretation of the gradient.
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Figure 4.3: Electrostatic field and its equipotential surfaces.

the direction of the maximal change of the field.

Let us now briefly discuss the physical interpretation of the introduced scalar poten-
tial V . A point charge q, placed in an electrostatic field, experiences the force Fe = qE.
The work done by an external agent to carry the charge from point A to point B in the
field is

WAB = −q
∫ B

A

dr ·E = q

∫ B

A

dr · ∇V = q

∫ B

A

dV = VB − VA. (4.21)

Thus, the work done by an external agent to move a unit charge between the points A
and B is given by the potential difference:

WAB/q = VB − VA. (4.22)
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Clearly, if VB > VA, WAB > 0, the external agent must do (positive) work to bring
the charge to a point with a higher potential (just like we have to work–and sweat–to
elevate an object in the gravitational field of earth). We chose a minus sign in Eq. (4.23)
to conform to this (physically meaningful) convention. Although it is the potential
difference that has a direct physical interpretation, one can also introduce a potential
at a given point relative to a reference point. It is convenient to take the latter be far
removed, effectively be in infinity and let V∞ = 0. It then follows that the work done
by an external agent to bring a unit charge from infinity determines the potential,

V = W∞/q . (4.23)

There are two important corollaries of Eq. (4.16) and (4.21)
Corollary 1. The work done to move a charge in an electrostatic field does not
depend on the path.
Corollary 2. The work done to move a charge in an electrostatic field along a
closed path is zero.
The first corollary follows at once from the fact that the performed work depends only
on the potential difference between the two points, not on the actual path. The second
flows from the first by noticing that if the path is closed, the end points must be the
same resulting in zero overall work. Both corollaries are useful for solving practical
problems.
Example 4. 2. Determine the work done to move a unit charge in the field E =
axy + ayx from point (1, 2, 1) to the point (3, 4, 1).
Solution. The field is clearly electrostatic because ∇ × E = 0. Since the work does
not depend on the path, we break the path into two intervals, (1, 2, 1) → (3, 2, 1) and
(3, 2, 1) → (3, 4, 1). On the first interval, dl = axdx andW1 = −

∫ 3

1
ydx = −2×2 =

−4 J. On the second interval, dl = aydy and W2 = −
∫ 4

2
dyx = 3 × 2 = −6 J. The

total work is then W = W1 +W2 = −10 J.
Alternatively, we can first determine the potential,

Ex = y = −∂V
∂x

, Ey = x = −∂V
∂y

. (4.24)

It follows by integrating the first equation that V (x, y) = −xy + F (y) where F is
to be determined. Substituting this into the second equation, we arrive at F ′(y) =
0 ⇒ F (y) = const. Thus V (x, y) = −xy + const. The work done to move a unit
charge can then be worked out from the definition: W = V2−V1 = −12+2 = −10. J.

Finally, we observe that by combining Eqs. (4.16) and (4.11), we obtain the general
quasi-static Laplace’s equation

∇ · [εs(r)∇V ] = 0 . (4.25)

For homogeneous media, εs = const, the general Laplace’s equation simplifies to

∇2V = 0 , (4.26)
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where the Laplacian on the l.h.s. is defined in the Cartesian coordinates as

∇2 ≡ ∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
. (4.27)

Eqs (4.25) or (4.26) allow one to reduce the problem of finding an unknown vector field
to that of figuring out an unknown scalar field which has one third as many unknown
variables!

4.2 Capacitance, conductance and inductance
We now introduce several lumped circuit parameters that are frequently encountered in
low-frequency situations.
Definition. An arrangement of two identical conductors carrying equal and opposite
charges which are separated by a dielectric medium is called a capacitor, see Fig. 4.4.
The conductors are referred to as capacitor plates. The capacitance C of a capacitor

Q

V

Q




 
  



   




Figure 4.4: Illustrating a generic capacitor.

carrying a charge Q for given voltage V0 between the plates is defined as the ratio

C =
Q

V0
. (4.28)

Capacitors are used to store charges. In this connection a natural question arises: What
is the electrostatic energy stored in a capacitor? To answer the question, we shall
determine the energy of a charged system. By the energy conservation law, the latter is
equal to the work done to assemble a given charge configuration.

We consider first a simple system containing just three point charges, Q1, Q2, and
Q3, located at the points P1, P2, and P3 with the potentials V1, V2, and V3, respectively.
There is no work done to bring charge Q1 from infinity to the point P1 since there are
no other charges to influence such a move. Thus, W1 = 0. However, the work done to
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move charge Q2 from infinity to its location is W2 = Q2V12 where V12 is the potential
generated at the position P2 by the charge at the position P1. In general, we can denote
the potential generated by the i’th charge (i=1,2,3) at the position Pj , (j=1,2,3) by Vij .

By the same token, the work needed to be done to move charge Q3 in the position
will be W3 = Q3(V13 + V23). The overall work can then be expressed as

We = 0 +Q2V12 +Q3(V13 + V23). (4.29)

If we reverse the order, we can represent the same amount of work as

We = 0 +Q2V32 +Q1(V21 + V31) (4.30)

It follows by adding Eqs. (4.29) and (4.30) term by term that

2We = Q1V1 +Q2V2 +Q3V3, (4.31)

where Vj is the total potential at the point Pj . It follows that

We = 1
2 (Q1V1 +Q2V2 +Q3V3). (4.32)

Generalizing to N charges we obtain

We = 1
2

∑N
k=1QkVk , (4.33)

which is the interaction energy of a system of point charges. For a continuous charge
distribution, the interaction energy can be further generalized to yield

We = 1
2

∫
v
dvρvV , (4.34)

for a volume charge and
We = 1

2

∫
S
dSρSV , (4.35)

for a surface charge distribution.
We can now express the energy stored in a capacitor in terms of its capacitance. We

begin by writing down the interaction energy of the charges on both plates as

We = 1
2 (
∫

S1
dS ρS1V1 +

∫
S2
dS ρS2V2). (4.36)

In Eq. (4.36), ρS1 and ρS2 are surface charge densities on each plate. Since in the static
situation, there are no currents on the plates, each plate is an equipotential surface and
we can factor out V1 and V2 from the integrands on the r.h.s of Eq. (4.36), leading to

We = 1
2 (V1

∫
S1
dS ρS1 + V2

∫
S2
dS ρS2). (4.37)

Next, the total charges on the plates are equal and opposite, implying that∫
S1

dS ρS1 = −
∫

S2

dS ρS2 = Q. (4.38)

68



It can be inferred from Eqs. (4.37) and (4.38) that

We = 1
2QV0 = 1

2CV
2
0 = 1

2Q
2/C , (4.39)

where V0 = V1 − V2 is the voltage across the plates.
On the other hand, the assembled charges generate the electrostatic field inside the

capacitor with the energy
We = 1

2

∫
v
dvεE2. (4.40)

By energy conservation,

1
2CV

2 = 1
2

∫
v
dvεE2,=⇒ C =

1
V 2

0

∫
v

dvεE2 . (4.41)

Eq. (4.41) provides a practical way to calculate the capacitance of any electrostatic or
quasi-electrostatic system. The algorithm is rather simple:

1. Determine the scalar potential solving the Laplace equation (4.26);

2. Find the electric field with the help of Eq. (4.16);

3. Use Eq. (4.41) to figure out the capacitance.

The formula stemming from the energy balance consideration is actually much simpler
to use than the definition of capacitance (4.28).

In cases involving currents, there are two more important circuit parameters.
Definition. Conductance G is the ration of the total current through the conductor to
the voltage between the conductor ends,

G =
I

V0
. (4.42)

In case all currents are conduction currents, Eq. (4.42) reduces to

G =
1
V0

∫
S

(dS ·E)σ . (4.43)

To find the conductance for a given voltage between the conductor ends you can

1. Determine the scalar potential;

2. Find the electric field and the corresponding current density;

3. Find the total current through the conductor cross-section;

4. Apply Eq. (4.42) to obtain the conductance.
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I

I

Figure 4.5: Illustrating a generic indictor.

Definition. Inductance L is the ratio of the magnetic linkage through a closed loop
(or loops) to the current circulating in the loop(s). The conductors carrying currents,
which generate magnetic fluxes through their cross-sections, are known as inductors,
see Fig. 4.5.
The inductance is then defined as

L =
Ψ
I

=
N

I

∫
S

dS ·B , (4.44)

where N is the number loops placed in close proximity of each other. In case the
current is due to conduction only,

L =
N
∫

S
dS ·B∫

S
(dS ·E)σ

. (4.45)

Similar to the capacitance calculation, it is useful to apply energy balance considera-
tions to work out inductances of various inductors. One the one hand, we know from
the circuit theory that the energy associated with each inductor is

Wm = 1
2LI

2. (4.46)

On the other hand, this energy is stored in the magnetic field of the inductor, hence

Wm = 1
2

∫
v
dv µH2. (4.47)

Eqs. (4.46) and (4.47) imply that

L =
1
I2

∫
v

dv µH2 . (4.48)

Thus to determine the inductance of an inductor one can
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1. Find the scalar potential;

2. Determine the field and corresponding current density;

3. Calculate the total current through the conductor cross-section;

4. Solve Ampère’s equation (4.14) to determine the magnetic field;

5. Apply Eq. (4.48) to find the inductance.

We will now illustrate the use of Eqs. (4.41), (4.43), and (4.48) to calculate some cir-
cuit parameters of a simple arrangement shown in Fig. 4.6.
Example 4. 3. Determine the capacitance and conductance of the system shown
in Fig. 4.6 at low frequencies. The voltage between the plates is V0 cosωt. The
permittivity and conductivity of the material between the capacitor plates are ε
and σ, respectively.
Solution. We look for quasi-static solutions for the fields with the harmonic time de-
pendence. The spatial field distributions can be found by solving the static Maxwell’s
equations. It follows from the problem symmetry that the potential must depend only
on the x-coordinate. Thus,

)cos(0 tVV 

w

h

l

z
y

x

Figure 4.6: Illustrating the arrangement for Example 4.3.

d2V

dx2
= 0, (4.49)

subject to the boundary conditions, V (x = h) = 0 and V (x = 0) = V0. The solution
to Eq. (4.49) subject to the boundary conditions is

V (x) = V0(h− x)/h, (4.50)

implying that
E = −∇V = axV0/h. (4.51)

It then follows that the electrostatic energy between the capacitor plates is

We =
∫

v

dvεE2/2 =
εV 2

0

2h2
wlh. (4.52)
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On the other hand,
We = 1

2CV
2
0 , (4.53)

implying that

C =
εwl

h
. (4.54)

Next, the current density,

J = σE = axσV0/h. (4.55)

The total current between the plates is then,

I =
∫

S

dS · J = σV0wl/h. (4.56)

Thus,

G =
σwl

h
. (4.57)
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Chapter 5

Applications

5.1 Transmission Lines

5.1.1 Transmission line equations
Transmission lines (TL) are used to guide electromagnetic wave propagation to en-
hance efficiency of power delivery from a transmitter to a receiver(s). There are four
major types of transmission lines, see Fig. 5.1

)(a

a2
c

b
a2

d

)(b

)(c
)(d

microstrip

Figure 5.1: Types of TLs: (a) Coaxial cable, (b) two-wire line, (c) parallel-plate, and
(d) microstrip line.

• Parallel-plate lines, also referred to as strip-lines;

• Two-wire lines (power lines or telephone lines);
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• Coaxial lines (TV cables, electronic cables);

• Microstrip lines.

All can be characterized in terms of the voltage between the two conductors and the
current along the conductors as is schematically displayed in Fig. 5.2. In general,

I

I

V

Figure 5.2: Transmission line description in terms of the voltage across and current
along the line.

y=-sinx, x∊[0,2π]

1V

)(a

Hzf 60

m100

2V

21 VV 

1V

)(b

cm3

2V

21 VV 

GHzf 10

Figure 5.3: Illustrating low-and high-frequency regimes of TL operation.
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the quasi-static approximation only applies to transmission lines operating at relatively
low frequencies. As an example, take the operating frequency of a few tenths of hertz,
f = 60 Hz, say. The operating wavelength, associated with this frequency, is λ '
c/f = 5000 km. Thus, for a section of the transmission line of l = 100 m, l/λ =
2 × 10−5 � 1. The quasi-static approximation works well: V1 = V2 along the entire
section. This situation is displayed in Fig. 5.3(a). On the other hand, for a transmission
line operating at f = 10 GHz, say, λ ' c/f = 3 cm. For a three-centimeter long line
section, l/λ = 1 and V1 6= V2 for any two points within this section as is depicted in
Fig. 5.3(b).

All transmission lines are characterized by four circuit parameters:

• R is a finite resistance per unit length Ω/m along the current carrying (imperfect)
conductors;

• G is a finite conductance per unit length S/m between the two (imperfect) con-
ductors making up the line;

• C is a finite capacitance of the line per unit length, F/m;

• L is the finite inductance of the line per unit length, H/m.

The transmission line equations can be derived from the circuit model displayed in
Fig. 5.4.

),( tzV

),( tzI ),( tzzI 

zG zC 

zLzR

z zz 

),( tzzV 

Figure 5.4: An equivalent circuit model for TL.

First, applying the voltage Kirchoff’s law to the closed circuit, we obtain

v(z, t) = i(z, t)R∆z + L∆z
∂i(z, t)
∂t

+ v(z + ∆z, t). (5.1)

It follows from Eq. (5.1) that

−v(z + ∆z, t)− v(z, t)
∆z

= R i(z, t) + L
∂i(z, t)
∂t

. (5.2)

In the limit ∆z → 0, we arrive at the first transmission line equation

∂v

∂z
= −R i− L

∂i

∂t
. (5.3)
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Applying the current Kirchoff’s law to the circuit node in Fig. 5.4, we obtain

i(z, t) = v(z, t)G∆z + C∆z
∂v(z + ∆z, t)

∂t
+ i(z + ∆z, t). (5.4)

Eq. (5.4) can be rearranged as

− i(z + ∆z, t)− i(z, t)
∆z

= Gi(z, t) + C
∂v(z + ∆z, t)

∂t
. (5.5)

In the limit ∆z → 0, we arrive at the second transmission line equation

∂i

∂z
= −Gv − C

∂v

∂t
. (5.6)

Eqs. (5.3) and (5.6) are the generic transmission line equations.
We now seek time-harmonic solutions to Eqs. (5.3) and (5.6) in the form

v(z, t) = V (z)ejωt, i(z, t) = I(z)ejωt. (5.7)

On substituting from Eq. (5.7) into the transmission line equations, we obtain

dV

dz
= −RI(z)− jωLI(z) = −ZI(z), (5.8)

and
dI

dz
= −GV (z)− jωCV (z) = −Y V (z). (5.9)

Here we introduced

• Z = R+ jωL , the complex impedance per unit length, Ω/m,

• Y = G+ jωC , the complex admittance per unit length, S/m.

G C

LR

G C

LR

Figure 5.5: Circuit representation for a general TL.

The general solutions to Eqs. (5.8) and (5.9) can be obtained by eliminating one of
the variables in favor of the other. For instance, eliminating the current, we arrive at

d2V

dz2
− γ2V = 0, γ =

√
Y Z = α+ jβ, (5.10)
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with the solution,
V (z) = V

(+)
0 e−γz︸ ︷︷ ︸

incident wave

+ V
(−)
0 eγz︸ ︷︷ ︸

reflected wave

. (5.11)

Here γ is a complex propagation constant. The forward-propagating part corresponds
to the incident wave, while the backward-propagating one to the reflected wave. It can
be inferred from Eq. (5.8) that

I(z) = − 1
Z

dV

dz
. (5.12)

On the other hand, a general solution for the current is

I(z) = I
(+)
0 e−γz︸ ︷︷ ︸

incident wave

+ I
(−)
0 eγz︸ ︷︷ ︸

reflected wave

. (5.13)

Eqs. (5.11) through (5.13) imply that

I
(+)
0 = V

(+)
0 /Z0, I

(−)
0 = −V (−)

0 /Z0, (5.14)

where

Z0 =

√
Z

Y
, (5.15)

is the characteristic impedance of the transmission line.
Consider now two important particular cases.

1. Lossless TL:
R = G = 0. (5.16)

In this case, α = 0 and β = ω
√
LC. It follows that the phase velocity, vp =

ω/β = 1/
√
LC. Also, the TL impedance, Z0 =

√
L/C.

2. Distortionless TL:
R

L
=
G

C
. (5.17)

In this case,
α = R

√
C/L, β = ω

√
LC. (5.18)

It is again seen that there is no dispersion, vp = ω/β = 1/
√
LC, and the TL

impedance is the same as that for a lossless line, Z0 =
√
L/C. However, a

distortionless line need not have zero loss, and hence it is a more realistic case.
In practice, telephone lines are required to be distortionless. Lossless lines–or the
closest approximation available in reality–are desirable for power transmission.

Example 5. 1. Show that at high frequencies R� ωL and G� ωL,

γ '

(
R

2

√
C

L
+
G

2

√
L

C

)
+ jω

√
LC.
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Obtain a similar formula for Z0.
Solution. Use the definition, γ =

√
(R+ jωL)(G+ jωC). It follows that

γ = jω
√
LC

√(
1 +

R

jωL

)(
1 +

G

jωC

)
.

Expanding in powers of small parameters jωL/R and jωC/G using

(1 + ε)n ≈ 1 + nε, for ε� 1,

we obtain

γ ' jω
√
LC

(
1 +

1
2
R

jωL

)(
1 +

1
2

G

jωC

)
,

and keeping only first terms in both small parameters, we obtain

γ ' jω
√
LC

(
1 +

1
2
R

jωL
+

1
2

G

jωC

)
' jω

√
LC +

(
R

2

√
C

L
+
G

2

√
L

C

)
.

By the same token,

Z0 =

√
L

C

√
1 +R/jωL

1 +G/jωC
'
√
L

C

√
1 +

R

jωL
− G

jωC
.

Thus,

Z0 '
√
L

C

(
1− j

R

2ωL
+ j

G

2ωC

)
.

Example 5. 2. Given Z0, α, and β of a lossy transmission line. Assuming that Z0

is purely real, determine R, L, C and G.
Solution. γ = α+ jβ. Observe that

γ =
√
xy, Z0 =

√
x/y,

where x = R+ jωL and y = G+ jωC. It follows that

γ2 = xy, Z2
0 = x/y.

Hence,
y = γ/Z0, x = γZ0.

Separating real and imaginary parts, we obtain the TL parameters,

R = Re(γZ0) = αZ0, G = Re(γ/Z0) = α/Z0.

and

L = Im(γZ0/ω) = βZ0/ω, C = Im
(

γ

ωZ0

)
=

β

ωZ0
.

78



5.1.2 Input impedance, reflection coefficient, and power
Recall that the time-harmonic waves on a transmission line are determined in terms of
the voltages and currents:

V (z) = V
(+)
0 e−γz + V

(−)
0 eγz. (5.19)

and

I(z) =
V

(+)
0

Z0
e−γz − V

(−)
0

Z0
eγz. (5.20)

If the line is loaded at z = l to the load with the impedance ZL as is shown in Fig. 5.6,

gV
LZ

z zl

Figure 5.6: TL connected to a load with the complex impedance ZL.

the boundary conditions are

VL = V (z = l), IL = I(z = l). (5.21)

It can be inferred from Eqs. (5.19), (5.20) and (5.21) that

V
(+)
0 = 1

2 (VL + Z0IL)eγl, (5.22)

and
V

(−)
0 = 1

2 (VL − Z0IL)e−γl. (5.23)

Let us now determine the input impedance at a general position z along the TL. We
define the input impedance as

Zin(z) =
V (z)
I(z)

= Z0
V

(+)
0 e−γz + V

(−)
0 eγz

V
(+)
0 e−γz − V

(−)
0 eγz

. (5.24)

Using Eqs. (5.22) and (5.23) in Eq. (5.24), we arrive at

Zin(z) = Z0
(VL + Z0IL)eγ(l−z) + (VL − Z0IL)e−γ(l−z)

(VL + Z0IL)eγ(l−z) − (VL − Z0IL)e−γ(l−z)
. (5.25)
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Using the hyperbolic functions,

coshx = 1
2 (ex + e−x), sinhx = 1

2 (ex − e−x), (5.26)

and

tanhx =
sinhx
coshx

=
ex − e−x

ex + e−x
, (5.27)

we obtain the expression for the input impedance at the position z on the line as

Zin(z) = Z0

[
ZL + Z0 tanh γ(l − z)
Z0 + ZL tanh γ(l − z)

]
. (5.28)

Here ZL = VL/IL is the load impedance. For a lossless line, γ = jβ and tanh[jβ(l−
z)] = j tan[β(l − z)], implying that

Zin(z) = Z0

[
ZL + jZ0 tanβ(l − z)
Z0 + jZL tanβ(l − z)

]
. (5.29)

Let us consider three particularly important limiting cases of lossless lines:

• Short-circuited line, ZL = 0,=⇒ Zsc(0) = jZ0 tanβl;

• Open-circuited line, ZL = ∞,=⇒ Zoc(0) = Z0
j tan βl = −jZ0 cotβl;

• Matched line, ZL = Z0,=⇒ Zm(z) = Z0.

Example 5. 3. Show that a lossy transmission line of length l has an input impedance
at the generator Zsc = Z0 tanh γl when shorted and Zoc = Z0 coth γl when open.
Solution. At the generator, z = 0 andZin/Z0 = (ZL+Z0 tanh γl)/(Z0+ZL tanh γl).
It follows that as ZL = 0, Zsc = Z0 tanh γl and as ZL = ∞, Zoc = Z0/ tanh γl =
Z0 coth γl.

Next, we introduce the reflection coefficient as a ratio of the reflected voltage to the
incident voltage at the position z on the line,

Γ(z) =
V

(−)
0 eγz

V
(+)
0 e−γz

. (5.30)

It can be inferred using Eqs. (5.22), (5.23) and (5.30) that

Γ(z) =
ZL − Z0

ZL + Z0
e2γ(z−l) . (5.31)

Finally, we will determine the average power transmitted by the line from the source
to a receiver by a lossless transmission line. The average power at a distance l away
from the generator is

〈P 〉 = 1
2Re[V (l)I∗(l)]. (5.32)

80



Using Eqs. (5.19) and (5.20), and assuming a lossless line, γ = jβ, we obtain

〈P 〉 = 1
2Re

{
V

(+)
0

[
ejβl + Γ(l)e−jβl

] V
(+)∗
0
Z0

[
e−jβl − Γ∗(l)ejβl

]}
= 1

2Re
{
|V (+)

0 |2
Z0

[
1− |Γ(l)|2 + Γ(l)e−2jβl − Γ∗(l)e2jβl

]}
. (5.33)

Since the last two terms are purely imaginary, we arrive at our result for the transmitted
power

〈P 〉 =
|V (+)

0 |2

2Z0

[
1− |Γ(l)|2

]
. (5.34)

5.2 Optical fibers
Optical fibers (OF) serve as the most favorable platform for modern communications
systems.Their main advantages over the competition are as follows

b

a

a

b

Jacket

Cladding

Core

1n
2n

0n

Radial Distance

Figure 5.7: Schematic sketch of an optical fiber.

1. The OFs have a very large bandwidth, typically of a few THz at optical frequen-
cies of about 100 THz;

2. The OFs have extremely low losses of a few tenths of dBs per kilometer;

3. The OFs are immune to many common noise sources that plague conventional
communication systems;
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4. The OFs are quite secure;

5. The OF manufacturing is a standard low-cost technology.

A typical OF is made of–typically silica glass–core surrounded by a cladding of a
material with a slightly lower index of refraction. The whole system is then wrapped
into a jacket as is shown in Fig. 5.7. Recall from Chap. 3 that for nonmagnetic media
with the constitutive parameters, ε and µ = µ0, the refractive index is defined as

n =
√
ε/ε0. (5.35)

Recall further that any plane wave striking the interface between the fiber and cladding
at the angle greater than the total internal reflection angle,

θc = sin−1(n2/n1), (5.36)

is totally reflected and thereby is trapped by the fiber core. Hence light is transmitted
along the fiber because of total internal reflection from the core-cladding interface, see
Fig. 5.8.

1n

0n

0n

2n

2n

cc

a

a

Figure 5.8: Illustrating the numerical aperture concept.

The fiber transmission efficiency is determined by the numerical aperture defined
as

NA ≡ sin θa. (5.37)

It can be inferred applying Snell’s law (3.164) to the geometry in Fig. 5.8 that

n∞ sin θa = n1 sin(π/2− θc) = n1 cos θc '
√
n2

1 − n2
2. (5.38)

It then follows that in the air, where the light source is, n∞ = 1, and Eq. (5.38) implies

NA = sin θa =
√
n2

1 − n2
2 . (5.39)
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There two other dimensionless parameters that characterize optical fiber modes: the
relative refractive index mismatch defined as

∆ =
n1 − n2

n1
� 1, (5.40)

which is typically rather small, ∆ � 1, and the V -parameter,

V =
πd

λ

√
n2

1 − n2
2. (5.41)

The latter specifies the number of modes N trapped by the fiber:

N ' 1
2V

2 . (5.42)

To characterize the power transmission by the fiber, we need to know a linear loss
(attenuation) factor which can be determined by examining fiber losses on propagation.
The power passing through the fiber at a distance L away from the source is related to
the power at the source by the expression

P (L) = P (0)e−αL. (5.43)

It is convenient to measure the attenuation constant α in dB/km, such that Eq. (5.43)
can be rewritten as

P (L) = P (0)10−αL/10, (5.44)

where the attenuation constant in dB/km is

αL = 10 log10

P (0)
P (L)

. (5.45)

In fiber optical communications one wants to avoid absorption losses at all costs.
As a result, the input wave packets should have carrier frequencies far from any in-
ternal resonances of fiber core material. Under these conditions, the refractive index
dependence on the frequency is fairly weak and it can be inferred from Eq. (2.21) to be

n2(ω) = 1 +
m∑

s=1

Bsω
2
s

ω2
s − ω2

. (5.46)

Eq. (5.46) is known as the Sellmeier equation; {ωs} are the resonant frequencies {Bs}
are phenomenological fitting parameters of the fiber core material.

One can then introduce the propagation constant β of a plane wave with the fre-
quency ω by the expression

β(ω) =
ω

c
n(ω) . (5.47)

As n(ω) does not vary substantially with ω far from resonances, neither does β. The
latter then can be expanded in a Taylor series around the carrier frequency ω0 as

β(ω) = β0 + β1(ω − ω0) + 1
2β2(ω − ω0)2 + . . . (5.48)
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where

βm =
(
dmβ

dωm

)
ω=ω0

, (m = 0, 1, 2, . . .). (5.49)

In particular, the first term in the expansion describes the group velocity,

β1 =
1
vg

=
1
c

(
n+ ω

dn

dω

)
. (5.50)

Sometimes a group refractive index ng is also introduced such that

vg =
c

ng
, (5.51)

where the group refractive index is given by

ng = n+ ω
dn

dω
. (5.52)

The second term in Eq. (5.48) is the group velocity dispersion parameter describing
the wave packet distortion; it can be shown that

β2 =
1
c

(
2
dn

dω
+ ω

d2n

dω2

)
. (5.53)

Example 5. 4. Derive Eq. (5.53).
Solution. It follows from Eq. (5.49) that β2 = dβ1/dω. Taking a derivative of
Eq. (5.50) and using the rule, (fg)′ = f ′g + g′f we arrive at Eq. (5.53).

In practice, often a different dispersion parameter D is used which is defined as

D ≡ dβ1

dλ
. (5.54)

We can show that the two dispersion parameters are related viz.,

β2 = −Dλ
2

2πc
. (5.55)

Example 5. 5. Derive Eq. (5.55).
Solution. It follows from Eq. (5.54) and the definition of the wavelength λ = 2πc/ω
using the chain rule that

D =
dβ1

dω

dω

dλ
.

It follows from Eq. (5.49) that the first term on the rhs is just β2, implying that

D = −2πcβ2

λ2
,=⇒ β2 = −Dλ

2

2πc
.

The two dispersion parameters depend on the wavelength. Their wavelength depen-
dence is exhibited in Fig. 5.9 for typical silica glass fibers.
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Figure 5.9: Variation of β2, D, and d12 with the wavelength for fused silica. Both β2

and D vanish at the zero dispersion wavelength corresponding to about 1.27 µm. From
“Nonlinear Fiber Optics” by G. P. Agrawal.

Finally, an important phenomenon involving two closely spaced wave packets, cen-
tered at different carrier wavelengths, takes place on their propagation inside a fiber.
This phenomenon is called the spatial walk-off. The spatial walk-off occurs because
the two wave packets have different group velocities and the faster overtakes the slower
one completely walking through it. As a result, the temporal profiles of the pulses cease
to overlap, thereby drastically reducing their interactions. The spatial walk-off is char-
acterized by the walk-off parameter

d12 = β1(λ1)− β1(λ2) = v−1
g (λ1)− v−1

g (λ2). (5.56)

The corresponding walk-off length for pulses of typical duration T0 is

LW = T0/|d12|. (5.57)

As an example, examine a pulse at λ1 = 1.3µm co-propagating with the pulse at
λ2 = 0.8µm. It follows from Fig. 5.9 that d12 = 20ps/m, implying the walk-off length
of just 50 cm for T0 = 10 ps.
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