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Chapter 1

Vector Algebra: A Brief Review

1.1 Scalars and vectors

In general, there are two kinds of objects one deals with in vector algebra: scalars
and vectors. While the former have only magnitude, the latter are characterized by
their magnitudes and directions. Physical quantities such as mass, density, temper-
ature, and charge, say, are scalars, whereas a velocity, or a force is a vector. A unit
vector—which has a unit magnitude—can always be formed by dividing a vector by its

magnitude. For instance,
A

[A]
is a unit vector directed along A. A vector A can be geometrically represented as an

arrow; the length of the arrow equals the magnitude of A, and the arrow points into the
direction of A as is seen in Fig. 1.1.

a =

A

Figure 1.1: Geometric representation of a vector A.

Another way to represent a vector is through its three—in a three-dimensional space,



of course—components in a suitably chosen coordinate system. In this course, we will
be exclusively working with the Cartesian coordinates such that any vector A can be
represented in terms of its three coordinates (A, A, A,), or alternatively,

’A =Aza, +Aja, + Aza, |

Here a,, a, and a, are three mutually orthogonal unit vectors, (see Fig.1.2). The vector
magnitude can be determined using the Pythagoras’s theorem,

|A| = \/AZ+ A2 + AZ |

Figure 1.2: Decomposition of a vector A in the Cartesian coordinate system.

1.2 Vector addition and subtraction

Two vectors A and B can be added and/or subtracted component by component,
A+B=(A;+By)a, + (4, + By)ay, + (A, + B.)a,.

Geometrically, the vector addition can be represented using either a parallelogram rule
or a head-to-tail rule as depicted in Fig. 1.3. The subtraction is inverse to addition. As
follows from the definition, the vector addition/ subtraction obeys commutativity and
associativity properties, implying that

A+B=B+A, (commutativity),

and
A+B+C)=(A+B)+C, (associativity).



Figure 1.3: Tllustrating vector addition: (a) parallelogram rule and (b) head-to-tail rule.

Also a vector can be multiplied by a scalar, implying each vector component is
multiplied by a scalar,

kA = kAza, + kAya, + kA a,.
A product of a scalar and a vector sum/difference obeys the distributive law,

k(A + B) = kA + kB.

1.3 Vector multiplication

There are two kinds of vector products: dot or scalar product and cross or vector prod-
uct.

Definition. The dot product of two vectors A and B, written as A - B is defined as
a product of the vector magnitudes times the cosine of the smaller angle between them
when the two are drawn tail,

|A-B = |A|[B|cosfap | (1.1)

Implication. As follows from the definition, the two vectors are orthogonal iff their
scalar product is equal to zero.
In terms of the vector coordinates,

A-B=A,B,+A,B,+A.B.. (1.2)

Note that the dot product always results in a scalar quantity. The dot product obeys the
commutative and distributive rules

e AAB=B-A, commutativity;
e A-B+C)=A-B+A-C, distributivity.
As a corollary of the definition,

A-A=|AP,



implying an alternative way of determining the vector magnitude without resorting to
vector components,

A|=VA-A|
Further, the mutual orthogonality of the Cartesian unit vectors implies that
’am-ay:ay~azzar-a220, (1.3)
and
’aw-am:ay~ay:az-az:1‘. (1.4)

Example. 1.1. Show that (A + B) - (A — B) = |A|> — |B|%
Solution. Using the properties of the dot product: (A +B)- (A—-B)=A-A+B-
A-A-B-B-B=|A?>- |B]~

Definition. The cross product of two vectors A and B, written as A x B is
a vector whose magnitude is the area of the parallelogram formed by A and B-see
Fig.1.4—and is in the direction determined by the right-handed cork screw rule illus-
trated in Fig.1.5.
It follows that

A x B= ABsinf pga, |,

where a,, is a unit normal to the plane containing A and B.

Figure 1.4: Illustrating the cross-product.

In the coordinate representation,

a, a, a,
AxB=| A4, A
B, B, B..

The cross product obeys the following rules
e AxB=-BxA;
e Ax(B+C)=AxB+AxC;



AXB

|
.

(a) (b)

Figure 1.5: The right-handed cork-screw rule.

e AXA=0.

Also, the mutual cross products of the Cartesian unit vectors obey the rule

X =] a9

with cyclic permutations for the right-handed Cartesian system as is shown in Fig. 1.6.

A

ay

ay az
a, a,
ax

Figure 1.6: Illustrating unit vector cross products under cyclic permutations.

Example. 1.2. Show that (A + B) x (A — B) = 2B x A.

Solution. Using the properties of the cross product: (A +B) x (A—B)=A x A+
BxA-AxB-BxB=2BxA.

Example. 1.3. Given,a, x A = —a, +2a, and a;, X A = a, — 2a., Find A.
Solution. Assume that A = aa, + ba, + ca.. It follows that a, x A = b(a, X a,) +
c(ay x a,) = ba, — ca, = —a, +2a,. Hence, c = 1 and b = 2. Similarly, a, x A =
—aa, + ca, = a, — 2a,, implying that c = 1 and a = 2. Thus A = 2a, + 2a, + a..




As a consequence of the scalar and cross product definitions, we can infer that the
scalar triple product can be represented as

[A-(BxC)=(AxB) - C=B-(CxA)]| (1.6)

In the Cartesian coordinates, the scalar triple product can be written as

x z

. (1.7)

z

<

A-(BxC)=

T

QW

<

Qoo
<
Qo

x

Finally, the vector triple product can be expressed as using “bac-cab” mnemonic
rule in the form
Ax(BxC)=B(A-C)-C(A-B). (1.8)

Example 1. 4. Show that A - B x C is a volume of a parallelepiped having A, B,

and C as three contiguous edges.

Solution. A -B x C = |A]cosf|B x C
—— ——

, see the sketch below.

height area

Figure 1.7: Geometric illustration of the scalar triple product.

Example 1.5. Given A-B = A-Cand A x B = A x C, and A is not a null vector,
show that B = C.

Solution. Choose the x-axis along the direction of A. It follows that A = Aa, where
A # 0. Assume further that B = Bya,+Bya,+B.a, and C = Cya,+Cya,+C.a,.
A -B = A-Cthen implies that B, = C,, and A xB = A x Cimplies that By, = C|,
as well as B, = C,. As the components are the same, the vectors are equal.

1.4 Complex numbers and phasors

Definition. A complex number z can be expressed in the so-called rectangular form

as
z=u—+ju|,



where j = +/—1 and v and v are real numbers. Alternatively, it can be expressed in the
polar form as

z=rel? =r(cosd + jsing) |,

where the magnitude r and phase ¢ can be written as

r=vu2+v?, ¢ =tan"tov/u|

Geometrically, z can be represented as a ray in the uv plane making the angle ¢ with
the u-axis, see Fig. 1.8.

VA

v
-

Figure 1.8: Polar form of a complex number.

Given two complex numbers, z; = u; +jv; = r1e?? and 25 = ug+jvy = roe??2,
the result of their addition or subtraction can be most easily expressed in the rectangular
form:

Z1 + Z9 = U1 :l:UQ +j(”U1 :‘:Ug).

On the other hand, their multiplication and division are more naturally expressed in the
polar form as

i 21 "1 (e, —
2129 = 7’1T2€j(¢1+¢2), ~ — 763(% b2)
2 2

One can also introduce complex conjugation by the definition

2 =u—ju=reI?|

In the polar form, a complex number is not uniquely defined such that

z=red®ed? k=0,41,42,43....



This is because ¢/2™* = 1 for any integer k. The latter form comes in handy whenever
we want to find roots of a complex number. In general all nth roots can be represented

as
Zl/n _ Tl/n€j¢/nej27rk/n'

For example, if n = 2, there are only two distinct roots corresponding to k¥ = 0 and
k =1;since /% = 1 and /™ = cosm + jsinm = —1, we obtain

V7 = £ rei?l?,

Definition. A time-harmonic signal varies sinusoidally with time.

Definition. A phasor represents a complex signal with a time-harmonic phase.

Thus any physical time-harmonic signal 1(t) = acos(wt + 6), where w and 6 are
constant frequency and initial phase, respectively, can be represented in terms of a
complex phasor 1gel“? as

(1) = Re(thoe 1) |

Here Re denotes the real part of the complex signal and the complex amplitude )y can

be represented as
o = ae”)

where a is a real amplitude. The generalization to the phasor form of a vector time-
harmonic signal is straightforward:

A(t) = Re(Aoe_j“’t), A() = |A0|€j0.

Example 1. 6. The complex impedance of a monochromatic electromagnetic wave
of frequency w, propagating in a lossy medium is defined as

1/€
="
1+12

Here i, 7 and o are constitutive parameters of the medium. Express 7 in the polar
form.

Solution. Multiplying the numerator and denominator inside the square root by (1 —
jo/ew), we obtain

Vile (= 2)" _ ufee™

=Yl = lyfe"
1/2 1/4 ’
1+ (2)7] 1+ (2)7]
where
1/ € o
|77\:—1/4, tan 20, = —.



Chapter 2

Electromagnetic Fields and
Maxwell’s Equations

2.1 Charges, currents and electromagnetic fields

Definition. An electric charge () quantifies the capacity of an object for electromag-
netic interaction—the greater the charge the stronger the interaction. The charges could
be positive or negative; the charges of the opposite signs attract to each other while
those of the same sign repel from one another.

The interaction force between the two point charges (1 and ()2, separated a distance
Ry is determined by the Coulomb law

_ 1 Qi1Q2Ryo
471'6() R?Q ’

2.1

where R, is a radius vector from charge ()1 to Q2 and ¢y is the so-called free space
permittivity, given in the SI units by the expression

1079
= F 2.2
€0= 36"} /m (2.2)

Definition. An electric current is a flow of electric charges past a point or within a
conductor. The current [ is a time rate of change of the charge @,

_dQ

I= 2t (2.3)

The charge are measured in coulombs, C and the currents are measured in amperes,
abbreviated A. The smallest charge encountered in nature is the electron charge e,
which is equal to —1.60219 x 10~ C.

The electric charges and currents (moving charges) are the sources of electric E
and magnetic B fields, respectively. The vector field E is known as the electric field
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intensity or electric field strength and it is measured in volts per square meter, V/m?.
The field B is more precisely referred to as the magnetic flux density for the reasons
that become clear shortly and it is measured in webers per square meter, Wb/m2. To
help visualize the behavior of electric and magnetic fields in space, we introduce the
concept of electric and magnetic field lines.

Definition. The electric field lines are, in general, curves in space such that at any
given point on the line, the electric field is tangential to the line. As electric charges
are sources/sinks of the field, the electric field lines start at positive (source) and end
at the negative (sink) charges. Alternatively, if the electric field is generated by a time-
dependent magnetic field, its lines can be closed. These possibilities are illustrated in
Fig. 2. 1.

sl

(b)

Figure 2.1: Lines of the electric field generated by (a) static electric charges and (b) a
time-dependent magnetic field.

Definition. The magnetic flux density lines are, in general, continuous curves in
space such that at any given point on the line, the magnetic flux density is tangential
to the line. As no static magnetic charges have so far been discovered in the nature,
there are no static sources of magnetic fields—the latter are generated by moving electric
charges. Therefore, the magnetic flux density lines are either closed or go to infinity.
A natural question then arises regarding the quantitative description of electric and
magnetic fields: How can one quantify and measure E and B at a given point in space?

To answer this question, let us consider a small test charge ¢ at rest. It is known
from the experiment that the charge placed in an electric field E generated by some

other charges experiences the force
T =] e

It follows at once from Eq. (2.4) that the electric field at a position of the test charge is
simply the force per unit charge and it can be determined as

E=—°| 2.5
q
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Note that the definition (2.5) is unambiguous, provided the test charge is so small that
it does not alter the field at its location. Thus, the strength of the electric field at the
position of the charge can be determined by measured a force acting on a small test
charge at rest.

Next, if a small test charge moves with the velocity v in a magnetic field B, it is
known to experience the magnetic force

F,. = q(v x B). (2.6)

Example 2.1. Determine the components of the charge velocity v|| and v , parallel
and perpendicular to the magnetic field B, respectively.
Solution. Introduce a unit vector along B, b = B/B. It follows from the definition of
the dot product that the projection of v onto b is v - b. Hence the vector projection
along b is v = (b - v)b. Consequently, v, = v —v| = v — (v - b)b. Note that
v - b=0.

On taking a cross product of both sides of Eq. (2.6) with v we obtain

F,.xv, =—qBv), X (vxb)=—¢qv(vy-b)+¢B(v-v,)=¢gB(v-v)).

2

Note alsothat v - v = v — vﬁ. Thus we arrive at the expression for the magnetic field

B= M i 2.7)

a2 —07)

Thus, we can determine B by measuring the force on a moving charge and the charge
velocity. Note that Eq. (2.7) is indeterminate whenever v = v, because in this case
the force equals to zero according to Eq. (2.6). So the charge velocity should have
a component at an angle to the magnetic field to unambiguously determine the latter.
We note that Egs. (2.5) and (2.7) serve as the operational definitions of E and B,
respectively. The latter characterize the strength of electric and magnetic interactions
at a given point in space—described by a position radius vector r— and hence are local
measures of the electromagnetic interactions in a given system. Thus, E and B are
functions of the space coordinate; in general, they can also, vary with time,

E = E(r,t) and B = B(r,t).

If a test charge is moving in both electric and magnetic fields, which are, in general,
functions of time, it experiences the combined Lorentz force,

’FL:qE—quxB

)

and the electric and magnetic fields can be thought of as components of a common
entity called the electromagnetic field.

Example 2.2. A point charge () with a velocity v = vpa, enters a region of space
with a uniform magnetic field. The magnetic flux density in the region is B =
Bga, + Bya, + B,a,. What E should exist in the region for the charge to proceed
without change of its velocity.

12



Solution. Assuming E = E a, + Eya, + E.a, and writing down the second law of
Newton in components, we arrive at the equations,

mvl, = QE, + Q(vy B, — Byv.),

mv; =QE, + Qv By — B.v,),

and
mv, = QE, + Q(vy, By — Byuy).

Here the prime stands for a time derivative. The charge will proceed with the same
velocity if all components of the acceleration vanish at all times, i. e, v, = UZ// =0, =
0. Since att = 0 vy, = v, = 0, it follows that £, = 0, E, = B,vg and E, = —voB,,.

Thus, E = vy(B.a, — Bya,).

2.2 Electromagnetic fields in materials

The response of a material to an applied electric field depends on whether the material
has free electrons and therefore can conduct currents or not. Materials of the first kind
are called conductors whereas the rest are known as dielectrics.

In conductors, the electrons are free to move and their motion past heavy ions of
a crystal lattice constitutes a conduction current. One can introduce a local quantity
characterizing the current, the current density J measured in amperes per square meter,
which is just a current per unit cross section of a conductor. The total current is then

I:/dS-J, 2.8)

where dS = a,dS is an oriented elementary surface, a,, being a unit normal to the
surface as is indicated in Fig. 2.2.

dsS

/’,J
.
Ve

Figure 2.2: Illustrating the current density definition.
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The integral on the r.h.s of Eq. (2.8) is an example of a flux of the vector field—in
this instance J—through an open surface S.
Example 2. 3. Show that J = p, v where p, is the volume charge density and v is
the drift velocity of charge carriers.
Solution. Consider a small volume element dv = dS - vdt. The amount of charge
inside a cylindrical volume of height v - a, dt with a finite cross-section S is dQ) =
/. S(dS - v)dtp,. By definition, the current through the cross-section S is then I =
dQ/dt = [¢dS -vp, = [ dS-J. It follows that J = p,v.
The current density is related to the electric field via the local form of Ohm’s law,

T=0E] 29

where o is called the electric conductivity, measured in siemens per meter, S/m.

In the dielectrics, the electrons are bound to nuclei forming neutral atoms. The
application of an external electric field, however, causes spatial displacement of neg-
atively charged electron clouds away from positively charged nuclei; the latter being
so heavy that they remain immobile. The medium is then said to be polarized. This
process is illustrated in Fig. 2.3.

(CY

Figure 2.3: Illustrating the polarization of a nonpolar dielectric.

The polarization can be quantitatively described in terms of individual atom dipole mo-
ments.

Definition. An individual dipole moment vector p is defined as the product of an elec-
tron cloud charge and a position vector from the nucleus to the center of the electron
cloud. For instance, for an atom having just one bound electron, p = —er.

The dielectrics with the atoms that have no dipole moments in the absence of the
applied field are called nonpolar. Alternatively, the medium atoms of polar dielectrics
can have nonzero dipole moments even in the absence of E, but they are randomly
oriented. As the external electric field is applied, though, the dipoles align along the
field resulting in the medium polarization.

Regardless of a specific polarization origin, we can define a macroscopic polariza-
tion field.

Definition. The polarization field P(r,t) is a dipole moment per unit volume at the
position r within a polarized medium.

The polarized medium alters (reduces) the external electric field E such that the effec-
tive field inside the medium is described in terms of the electric flux density D,

D = ¢E+P], (2.10)
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where ¢y = 8.854 x 1012 farad per meter (F/m) is the so-called dielectric permittivity
of free space. Eq. (2.10) works for any dielectric; throughout this course we will be
dealing with linear, homogeneous, isotropic dielectrics for which P is linearly related

to E viz.,
o =B e

where ¥, is the electric susceptibility. It follows from Egs. (2.10) and (2.11) that

]D = €0(1+ xe)E = o, E = €E \ (2.12)

Here ¢ is the dielectric permittivity of the medium, and ¢, is a dielectric constant
(relative permittivity). Note that while € has the same units as €, i.e, farads per meter,
€, 1s dimensionless.

In reality, of course, there are no ideal conductors, nor are there ideal dielectrics.
Real materials have both bound and free (conducting) electrons and are characterized
by finite € and o. The distinction in the behavior of dielectrics and conductors depends
on the frequency of the applied time-harmonic electric field, E(t) = E,e~7“¢. To drive
this point home, we develop a simple classical model of matter response to an external
time-harmonic field. In this model-which works well for linear homogeneous isotropic
materials—atoms are treated as simple harmonic oscillators. That is, bound electrons
are assumed to be attached to the nuclei by “springs” which provide “restoring” forces
proportional to the electron displacement from the nucleus. Physically, the restoring
force experienced by an electron is due to its attraction to the nucleus. Assume that
each atom has Z bound electrons. Assume further that there are f; electrons per atom
having the binding frequency wy which corresponds to a particular type of the “spring”.
The quantities { f5} are referred to as the oscillator strengths.

Whenever an electron having the binding frequency wj is displaced by the displace-
ment vector ry in response to the external electric field, it experiences three forces: the
restoring force, F, = fmwfrs, the damping force, Fq = —2m~yrs—where 5 is a
phenomenological damping constant—and the force due to the external electric field,
F, = —eE_ e ¢t

The equation of electron motion (second law of Newton) is then

miy = —mwfrs — 2mystrs — eEge 79t (2.13)
Here each “dot” stands for a time derivative. We seek a driven solution to Eq. (2.13) in

the form, ‘
ry(t) = rg,e 79, (2.14)

It follows from Egs. (2.13) and (2.14) that the electron displacement amplitude is

cE,
sw — — A s 2.15
g m(w2 — w? — 2jws) 2.15)
implying that B(1)
ek(t
s(t . 2.16
(1) m(w2 — w? — 2jws) (2.16)
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The induced individual dipole moment of the electron of this type will be p; = —ers.
Next, if there are IV atoms per unit volume, the induced polarization is

P:NZfSpS:_NerSrS:NeQZ fsB . (2.17)
. - m (w2 — w? — 2jws)

s S

Note that the oscillator strengths satisfy the so-called sum rule
Y k=2 (2.18)

On comparing Eqgs. (2.11), (2.12) and (2.17), we infer that

Ne? fs
ew)=¢ |1+ - Z e | (2.19)
which provides a classical expression for the dielectric permittivity of materials as
a function of frequency of the applied electric field. Here the imaginary part of ¢
describes absorption of electromagnetic waves as we will see in Chapter 3.

Let us now explore what happens if the frequency of the applied electric field is
close to a particular resonant frequency of the material. For the sake of clarity, let that
be the lowest bound frequency of the dielectric, wg # 0, i.e, w &~ wyp. In this case, we
can single out the resonant term in Eq. (2.19) implying that

eoNe2 f 1

2

) 2.20
m  (w§ —w? —2jwyy) ( )

e(w) = enr(w) +

As typically vs < ws, the contribution to the permittivity due to non-resonant terms,
enr is a purely real and only weakly frequency dependent. It can be expressed as

Ne2f,/m
w2 —w?)
s#0 s
Notice that close to resonance, we can approximate

—w?+ wg — 270w ~ 2w(wo —w — §7Y0) ~ 2wo(wo — w — Jvo). (2.22)

It can be inferred from Eqs. (2.21) and (2.22) that the electric susceptibility near optical
resonance can be represented as

Xe(w) = Xe(w) + 5ixd (W), (2.23)
where / N e
Xe(w) = xnr(w) + 5= {(w e 73} , (2.24)
and ) N, N
Xe (W) = Seomon [(w — o)’ Jm%} . (2.25)
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Figure 2.4: Imaginary (top) and real (bottom) parts of linear susceptibility as functions
of frequency near resonance.

The real and imaginary parts of y. are sketched as functions of the frequency in
Fig. 2.5.

The difference between conductors and dielectrics can then be attributed to the
presence of free electrons in the former. Indeed, by looking into the low-frequency
limit, we notice that for pure dielectrics the lowest bound frequency must be nonzero,
while conductors can have a fraction of electrons, fy, say, that have wy = 0; those
are essentially free electrons. Consequently, the dielectric permittivity of conductors is
given by the expression

eoN foe?

clw) =eW +inme T

(2.26)
where ¢, is the overall contribution of the bound electrons with ws # 0. Since free
electrons can conduct currents, we can use Eq. (2.16) and Example 2.3, to work out the
current density,

N 2
T = —Nefoig = — o 2.27)
m(2yo — jw)
On comparing Eqs. (2.9) and (2.27), we infer the expression for the conductivity,
N 2
o(w) = — o™ (2.28)
m(2yo — jw)
It is seen from Eq. (2.28) that in the dc limit w — 0,
N 2
o Noe” _ (2.29)
2myo
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the conductivity is real, describing dc currents. In view of Eq. (2.29), the expression
for o can be cast into the form
g0

(2.30)

o\WwW) = ————
) 1—jwr’
where 7 = 1/27q is a characteristic time for current relaxation in conductors.
Next, comparing Egs. (2.26) and (2.28), we can express the former as

ec(w) = ep(w) + j(o/w). (2.31)

Eq. (2.31) implies that losses in real conductors/metals come in two guises: the absorp-
tion of electromagnetic waves by bound electrons—which is described by the imaginary
part of €,—and ohmic losses due to generating electric currents as described by the
second term on the r.h.s.

Finally, we note that at high frequencies, w > max(wj), dielectrics and conductors
respond to the applied electric field the same wave. In this limit, we can neglect all
{ws} and {~;} in the denominator of Eq. (2.19), leading to

W
€ =€ 1——2 , (2.32)
w

where we used Eq. (2.18) and introduced the plasma frequency

INZe?
wp = <. (2.33)
€egm

The phenomenological treatment of macroscopic medium response to the magnetic
field parallels that we just presented. An external magnetic field causes the medium
magnetization: the atomic magnetic moments align along the applied field causing
a finite macroscopic average dipole moment density. The latter called magnetization
M, and is a magnetic analog of P. By analogy, the magnetic field intensity H within
the magnetized medium can be determined as

[H=B/u— M| (2.34)

Eq. (2.34) holds true for any medium. Here,

|10 = 4 x 1077, H/m, (2.35)

is known as the free space permeability. In the case of a linear, homogeneous,

isotropic magnetic, we obtain
M = xuH] 236)

where X, is the magnetic susceptibility, implying that

| B = pio(1 + xu)H = o, H = pH |, 2.37)

Here 1 and p, are the magnetic permeability and relative magnetic permeability of
the medium. Note that while E and B are directly related to measurable quantities, the
forces on charges, D and H are auxiliary fields.
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2.3 Global or integral form of Maxwell’s equations

The first two Maxwell’s equations are mathematical expressions of the fact that static
charges are sources of the electric field and there are no static magnetic charges. In
particular, the first Maxwell equation—also known as the electric Gauss’s law—states
that the total flux of D through any closed surface S is equal to the total enclosed
charge,

j{ dS-D = Qene = /dvpv . (2.38)
s

v

Here the circle around the integral implies that the surface for the surface integration
must be closed. The choice of the oriented elementary surface dS = a, dS used on
the L.h.s of Eq. (2.38) is ambiguous as the unit normal can be directed either inside or
outside the volume enclosed by S. By convention, we choose a,, to be the outward
unit normal as is indicated in Fig. 2.5. Also p, is the volume density—in C/m3—of the
charge inside S.

Figure 2.5: Outward unit normal to a closed surface S.

Since there are no static magnetic charges, the second Maxwell equation (magnetic
Gauss’s law) states that

]{dS-B:o. (2.39)
S

It is now clear from Eqgs. (2.38) and (2.39) why D and B are referred to as the electric
and magnetic flux densities, respectively.

In the Cartesian coordinate system, the infinitesimally small surface and volume
elements required in Egs. (2.38) and (2.39) can be expressed as

dydza,

dS = { dxdza,
dxdya,
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and
dv = dxdydz.

The surface element calculation is illustrated in Fig. 2.6.

(@) (b) (©

Figure 2.6: Illustrating the elementary surfaces in the Cartesian coordinates.

The third Maxwell equation, or the Faraday’s law, relates the electric field circu-
lation around any closed path C' with the time rate of change of the magnetic flux
through an open surface S bounded by the path,

deE:fi s - B (2.40)
c dt Js

emf

In the circulation integral on the Lh.s. of Eq. (2.40), dl is an oriented infinitesimally
small path element which can be expressed in the Cartesian coordinates as

dl = dza, + dya, + dza..

The fourth Maxwell equation—sometimes referred to as Ampere’s law—links the
circulation of the magnetic field along a closed path with the flux of the overall current—
conduction current plus displacement current—through an open surface S rimmed by

the path,
}(dl H= /dS J+— S -D| (2.41)
*
mm conductlon displacement

To summarize, the first two Maxwell equations state the existence of static electric
and nonexistence of static magnetic charges. The third one implies that a time-varying
magnetic field can induce an electric field with the electromotive force (emf),

Eomt = ?{ dl-E|, (2.42)
C

20



in a given closed loop determined by the time rate of change of the magnetic flux
through the loop, that is

d
Eont =~ dS B| (2.43)

The fourth equation tells us that conduction and/or displacement currents generate a
magnetic field with the magnetomotive force (mmf),

Emmt = 7{ dl-H, (2.44)
c

in a closed loop determined by the time rate of change of the total current flux through
the loop. In particular, in the absence of conduction currents J = 0, the time-varying
electric fields can generate magnetic fields. Thus the propagation of electromagnetic
waves in source-free space, (p, = 0, J = 0) is a direct consequence of Egs. (2.40)
and (2.41). Note also that the displacement current is a fictitious current that has to do
with time-varying electric fields.

Example 2. 4. A magnetic flux density is given by B = a, B,/ Wb/m?, where B,
is a constant. A rigid rectangular loop is situated in the xz-plane with the corners
at the points (zo, o), (zo, 20 +b), (xo + a, 20 +b), (o +a, 2¢). If the loop is moving
with the velocity v = vga,, determine the induced emf.

Solution. At the time t the corners of the loop will be at the points (z¢ + vt, zp), (zo +
vt, 20 +b), (xo + a+vt, 20 +b), (xo + a + vt, 29). Using the Faraday’s law, Ecrn f =
fc dl-E = —% fs dS - B. In our case, dS = dxdza, implying that

zo+b xo+a+tvt
/dS B = BO/ dz/ @_Boblnm.
zo+ut xo + vt

It then follows that

1 1
gefm = Bobv — .
’ To+ vt x9+a-+ vt

Example 2. 5. Solve the previous problem for a stationary loop in the time-varying
magnetic field B = a, (B /x) cos wt Wh/m?.
Solution. If the loop is at rest, by analogy with the previous example,

d zo+b To+a d
5cmf = dt dS B= WBO sin wt / dz/ *

= wbBy sinwt In ﬂ. (2.45)
o

Thus,
o+ a

Lo

Eemf = wbBysinwt In

Example 2. 6. Assume that the loop in Example 2.3 moves with the velocity v =
vpa, in the time-varying field B = a, (By/) cos wt Wb/m?, find the induced emf.
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Solution. In this case, the loop moves and the magnetic flux density changes with time

such that
zo+b zo+a+vt d
Eemf = —Bo—coswt/ dz/ x
xo+vt
d t
— —Bob~ ( coswtn m (2.46)
dt To + vt
Doing the derivative, we obtain
t
Eemp = DBob [w sinwt In Totatut + vcoswt
xg + vt
1 1
X - . 2.47)
ro+vt x9g+a-+vt

2.4 Boundary conditions in electro-magnetics

We consider an interface separating two media. The boundary conditions linking the
electromagnetic fields on both sides of the interface can be derived from the Maxwell
equations in the integral form. To this end, introduce a set of three mutually orthogonal
unit vectors: the outward unit normal pointing into medium 2, a,,12, the unit tangential
vector a, and unit bi-normal vector a; such that (see Fig. 2. 7.),

Figure 2.7: Electromagnetic fields at the interface between the two homogeneous me-
dia.

a, = a,i2 X a,. (2.48)
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Let us decompose all fields into normal and tangential components to the interface such
that
E=E, +E, B=B, + B, (2.49)

with the similar expressions for D and H. It can be inferred from geometry that
E, =a,(E-a,) (2.50)

and
E,=E-—a,(E-a,) =a, x (Exa,), (2.51)

where “bac-cab” rule was used on the r.h.s of Eq. (2.51).
Applying the electric Gauss’s law, Egs. (2.38), to the cylindrical Gaussian pillbox
S shown in Fig. 2.7 and taking the limit of a very shallow pillbox, we obtain

74 dS a2 D = a3 - (Dy — D)AS = / dupy = psAAS, (2.52)
S

where p; is the surface charge density on the interface. It follows at once from Eq. (2.52)
that

[an12 - (D> — D) = ps] (2.53)

By the same token,

2,12+ (Bo — By) =0}, (2.54)

because there are no magnetic charges. Egs. (2.53) and (2.54) relate the normal com-
ponents of the electric and magnetic flux densities on both sides of the interface.

Applying now the Faraday law (2.40) to the Stockesian loop C, we obtain in the
limit of a very small loop the expression

7§ dl-E=a, (Ey—E)Al =0, (2.55)
C

since 0;B is finite on the surface of C' and the surface area vanishes as we shrink the
loop sides. Thus,
Esr — Ei; =0, (2.56)

or, alternatively, with the help of Eq. (2.51),
ani2 X [ap1e X (E2 —Eq)] =0, (2.57)

implying for an arbitrary point of the surface that

]am x (B —Eq) =0 \ (2.58)

At the same time, the Ampére equation tells us that

f dl-E = ar - (H2 — Hl)Al = (ab X anlz) . (H2 — Hl)Al =
C

=ay - [ap2 x (Hy — Hy)JAl = / dSay, - <J + 8D>
Se ot

—ay - J,Al (2.59)
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where J; is the surface current at the interface. It can be inferred from (2.59) that

a1z x (Hy — Hy) =3, | (2.60)

Egs. (2.53), (2.54), (2.58) and (2.60) constitute the general boundary conditions in the
electromagnetic theory.

2.5 Local or differential form of Maxwell’s equations

The Maxwell equations can also be cast into a differential (local) form in which they
pertain to any spatial point within a given region of space. Although local Maxwell’s
equations are less physically intuitive, they are more suitable to mathematically de-
scribe versatile electromagnetic problems. We begin by introducing local measures of
the vector field flux and circulation, the flux and circulation densities, or the divergence
and curl of the vector field.
Definition. The divergence of a vector field A at a given point is the net outward
flux of A per unit volume at the point. Mathematically,
divA = i M (2.61)
WA= dim, S -
It is known from the vector calculus that the divergence can also be written in terms of
the Del operator, denoted V, as

divA =V - A. (2.62)

In the Cartesian coordinates, the latter is defined as

V = é‘f’ 34_ ﬁ
~ Mo T Moy T Mo

And since A = A a, + Aya, + A.a,, we conclude that

A 04, 04, O0A,
divA =V - A= Ep + 2y + e (2.63)

In practice, the following divergence theorem is often handy in working out fluxes of
vector fields through closed surfaces.

Divergence Theorem. The flux of a vector field through a closed surface equals the
integral of the vector field divergence over the volume enclosed by the surface,

j{dS~A:/de~A. (2.64)
S v

We are now in a position to express the first two Maxwell’s equations in the local
form. Applying the divergence theorem to the 1.h.s of Eq. (2.38), we obtain

de-Dz/de-D:/dvpv. (2.65)
S v v
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It can be inferred from Eq. (2.65) that

/dv(V ‘D —p,) =0. (2.66)

Since the integral equation (2.66) holds for any volume, we conclude that the integrand
must be equal to zero at any point within the volume,

VD] 2o
[V-B=0] (268)

Next, we introduce the curl of a vector field as
Definition. The curl of a vector field A at a given point is a vector with a magnitude
equal to the maximum net circulation of A per unit area at the point. The curl is
directed along a unit normal to the infinitesimal area around the point which is oriented
to maximize the curl. The unit normal is chosen to conform to the right-hand rule:
whenever the fingers of your right hand follow the direction of dl along the area border,
your thumb points in the direction of the unit normal.

By the same token,

dl

Figure 2.8: Illustrating the choice of unit normal in curl evaluation.

Mathematically, curl can be defined as

A=V xA=li Jod1- A 2.69
curlA =Vx A= lim “Rg— (269)
In the Cartesian coordinates, the curl can be expressed as
a, a, a,
VxA=| & & & | (2.70)

A, A, A,

The following curl theorem is often useful in determining the circulation of a vector
field around a closed loop.

25



Curl Theorem. The circulation of a vector field along a closed path is equal to the
flux of the vector field curl through an open surface bounded by the path,

j{dl-Az/ds-V(xA). @2.71)
C S

With the aid of Eq. (2.71) and assuming that the loop C' is stationary, one can
transform the third Maxwell equation as

j{dl«E:/dS(VxE):f/dS-a—B,
c s s ot

implying that locally

VxE:—aa—]?. (2.72)

fcdl.H:/Sds-(vXH)Z/Sds <J+6£>.

It can then be inferred at once that

Similarly,

oD
VxH=J+4+—| 2.73
X + 5 (2.73)
Here the second term on the rhs is the displacement current (density) defined as
oD
J, ==\ 2.74
4= "7 (2.74)

Example 2.7. Given B = (1077/3) cos(67 x 10%¢ — 27z)a, Wb/m? in free space,
find E.
Solution. In free space, B = poH and D = egE. Hence, H = (1/127) cos(6m x
108t — 27z)a, A/m. Use Ampere’s law (2.73) with J = 0,

OE

VxH=c 2.75)

we can work out the Lh.s,
VxH= ax% sin(6m x 108t — 272) = axeo% (2.76)
It follows that the electric field must have only x-component. We can infer from
Egs. (2.75) and (2.76) that E should have the form
E = a,Acos(6m x 103t — 272), (2.77)

where A is an unknown constant. On substituting from Eq. (2.77) into Eq. (2.75) and
using Eq. (2.76), we obtain

1
G sin(67 x 108t — 272) = 6mep x A x 108 sin(6m x 108t — 272),

implying that A = 1078/36meg. As ¢g = 107°/36m, we arrive at A = 10. Thus,
E = 10cos(67 x 103t — 27z)a, V/m.
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2.6 Conservation laws in electromagnetic theory

We will now examine two important conservation laws encountered in the electromag-
netic theory: the charge and electromagnetic energy conservation. While the former
is a fundamental law of nature, independent of Maxwell’s equations, the latter is their
direct consequence.

The charge conservation law states that charges cannot be created, nor can they
be annihilated. In a global sense, this statement implies that an overall charge within
any finite volume must be conserved. Therefore the time rate of change of the charge
within the volume is equal to the current flux through the surface enclosing the volume,

d
%/dvpv——%dS-J. (2.78)

The minus sign in Eq. (2.78) indicates the fact that the charge within the volume de-
creases (increases) if the current flows outside (inside) the volume, see Fig. 2.9.

<y
<y

dQ €Q _,
dt t

() (b)

Figure 2.9: Illustrating the charge conservation law.

Assuming the volume in Eq. (2.78) is at rest, the local form of the charge conser-
vation law follows from Eq. (2.78) on the application of the divergence theorem to the

r.h.s, 5
d pv _
T dvpv—/vdv 5% de J= /dUV J. 2.79)
It follows at once from Eq. (2.79) that
Opu
V-J]=0 2.80
/v < a + > ; (2.80)
implying the local continuity equation
Ipy
-J=0]| 2.81
5t +V (2.81)
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Example 2.8. Given J = aze_””2, determine the time rate of change of the charge
density at (—1,0,0) and at (1,0, 0).
Solution. Using the continuity equation,
0py 0J, _p?
ot ox ve
Thus at the point (—1,0,0), dp,/0t = —2e~! < 0, whereas at (1,0,0) dp,/0t =
2e~! > 0. The current flows to the right.
Let us now explore the electromagnetic energy propagation in a material medium.
We assume that the medium is linear, homogeneous and isotropic as far as its electro-
magnetic properties are concerned,

D =¢E, B = H, (2.82)

and the current obeys Ohm’s law
J =0E. (2.83)

In view of Egs. (2.82) and (2.83), Maxwell’s equations can be cast into the form

V-E = py/e, V-H=0; (2.84)
OH
E=—-—nu— 2.85
V x T (2.85)
and 9E
V x H:UE—FGE' (2.86)

Next, taking a dot product of Eq. (2.85) with H and Eq. (2.86) with E, we obtain

OoH pwOH?

H- E)=—ypH — =->-—+ 2.87
(VxE)=—uHl-— TR (2.87)

and OE OE?

. — gE? = ep2y £
E-(VxH)=0FE+cE 5 oE” + 5 o0 (2.88)

Recalling the vector calculus identity,

V- RxQ)=Q-(VxR)-R-(VxQ), (2.89)

for any vector fields R and Q, and choosing Q = H and R = E, and subtracting
Eq. (2.88) from Eq. (2.87), we arrive at

1 1
V- (ExH)= —% (26E2 + 2uH2) —oE? (2.90)

Integrating Eq. (2.90) over the volume and using the divergence theorem on the Lh.s,
we obtain

1 1
j{ds-(E x H) = —g/dv —eB? + —pH? —/de2. (2.91)
S ot J, 2 2 Y
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Finally, rearranging terms we obtain the electromagnetic energy conservation law in
the form

9
at J,

dv Wem = — f ds-pP— / dvoE? |, (2.92)
S v

Here

1 1
Wem = —€FB? + fMHQ

2.
5 5 ) (2.93)

is the electromagnetic energy density in J/m? and

P-nH] 299

is the so-called Poynting vector representing the instantaneous electromagnetic power
flow, i.e., the electromagnetic power flowing per unit cross section in the medium,
W/m?. The second term on the r.h.s. of Eq. (2.92) describes ohmic losses. Thus, the
electromagnetic energy conservation law asserts that the electromagnetic energy inside
a finite volume can only change if the energy flows in or out of the volume through its
surface and is lost inside to ohmic losses. Note the conservation law (2.92) is a direct
consequence of Maxwell’s equations.

Example 2.9. Given B = a Bz coswt and its is known that E has only an z-
component, determine the electric field generated by this magnetic field.

Solution. The Faraday law implies

oB
VXE= BT a,wByz sin wt. (2.95)

As there is only an z-component of E, E = a, E(x,y, z,1), say, we have
VxE=ay0,F —a,0yF. (2.96)
On comparing Egs. (2.95) and (2.96), we conclude that
oy E =0, 0,F = wByzsin wt. 2.97)

It follows that
B 2
E(z,z,t) = wo0E

sinwt + f(x,t).

Here f(x,t) is an arbitrary function of time. In the limit w = 0, the magnetic field
is static and hence it cannot generate any electric field. Therefore, we conclude that

f(z,t) = 0. Thus, E = a,wBy(2?/2) sin wt.
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Chapter 3

Plane electromagnetic waves

3.1 Fundamentals of wave motion

Definition. A monochromatic wave is a periodic function of both space and time.
A physical field is said to behave as a monochromatic wave if it oscillates sinusoidally
in space and time. Consider, for simplicity, a one-dimensional scalar field U (x,t)-
where x and ¢ stand for the spatial coordinate and time—such as a density or pressure
wave, for instance. If the field propagates to the right, say, as a monochromatic wave,
one can write

U(z,t) = Acos(wt — kz + 0p). 3.1)

The latter can be rewritten in the phasor form as
Uz, t) = Re{Upe? @t=F2), (3.2)

where Uy = Ae7% is a complex amplitude of the wave. Note that the field remains
unchanged when translated in space by A and in time by 7. Thus, A and T are the
wavelength and period of the wave, defined by the expressions

kX = 2m; wT =2, (3.3)
implying that
2 2
A= T =21 (3.4)
k w

In Eq. (3.4), k is a wave number and w an angular frequency of the wave. The
concepts of wavelength and period are illustrated in Fig. 3. 1.

The introduced angular frequency w is measured in radians per second. Alterna-
tively, a linear frequency r—measured in hertz (Hz)—can be introduced; the former is

related to the latter viz.,
[w=2mv] (3.5)

Further, the quantity § = wt — kx + 0y is called the phase of the wave and 6y the
initial phase. The propagation velocity of a monochromatic wave can be inferred by
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Figure 3.1: Illustrating the definitions of the wavelength and period of the wave.

following the movement of a fixed point on the wave-front, defined as
wt — kx + 0y = const.
Assume we fix a point P on the wave-front as is indicated in Fig. 3. 2b. It follows that

u (a) v (b)
P NP i P
‘ ! |

1 X o Zy Z, X

6>

forward-propagating wave

backward-propagating wave
Figure 3.2: Forward-and backward-propagating plane waves.

the velocity of P can be found as

dr  w
=—=—. 3.6
T Tk G0
The velocity defined by Eq. (3.6) is referred to as the phase velocity of the wave.
So far we have only studied the wave propagating to the right, the so-called forward-
propagating wave. All the definitions are equally applicable to the backward-propagating
waves, which can be expressed as

Uz, t) = Acos(wt + kx + 0y) = Re{Upe? @iHka, 3.7

The motion of a backward-propagating wave is sketched in Fig. 3.2a. Thus, one can
express any one-dimensional monochromatic wave as

Uz = Re{Upe? @iFho)y, (3.8)
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Note that on introducing the wave vector k = ka, and the position vector,
r = za, +yay, + za,,

one can rewrite, kx = k - r. This identity hints to the generalization of our definition
to a monochromatic wave, propagating in the direction, specified by the wave vector,

k = kza, + kya, + k.a.,

as

Ulr,t) = Re{Uped K r—w1 | (3.9)

The wave defined by Eq. (3.9) is referred to as a plane wave because its wavefront—that
is a surface of the constant phase—is a plane such that

‘k~r—wt:const ‘ (3.10)

As a consequence of a finite wave speed, there is a time delay between an emitted and
received wave signals which can be used in various applications.

Example 3. 1. A radar signal sent from the earth to the moon is received back
on earth after a time delay of approximately 2.6 sec. Given the speed of light in
vacuum, ¢ = 3 x 108 m/s, estimate the distance between the earth surface and the
moon.

Solution. Assume the sought distance is R. The time delay for the light round trip to
the moon, At = 2R/c. It follows that R = cAt/2 ~ 3.9 x 10° km.

Finally, we observe that monochromatic waves represent only a particular—albeit
very important—class of waves. In general, a wave can contain many monochromatic
components. In this case, the wave is called a wave packet. Any wave packet can be
made up of a finite (infinite) number of monochromatic components via Fourier series
(transform).

3.2 Doppler effect

Whenever there is a relative motion of a time-harmonic wave source and a receiver,
the wave frequency detected by the latter differs from that emitted by the former. This
phenomenon is called the Doppler effect. The Doppler effect is a purely kinematic
effect and it takes place for waves of any physical nature whatsoever.

First, we present a “hand-waving” derivation of the Doppler effect for a source
moving along a straight line toward a receiver at rest. The situation is illustrated in Fig.
3. 3. When the source is at rest, u = 0, the receiver detects vy = v/Ag wave crests
per second, where v is a wave speed and )\ the wavelength of a monochromatic wave
emitted by the source at rest. If, however, the source moves with the velocity u = ua,,
the wave speed in the receiver reference frame is veyy = v + u. Consequently, the
receiver detects v = vefr /Ao = (v + 1) /Ao = v + u/ Ao crests per second, implying
that the wave frequency at the receiver shifts to

’y:uo—&—u/)\o:uo(l—i—u/v) ‘ (3.11)
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Figure 3.3: Doppler effect when a source S moves toward a receiver R.

Consider now a general plane monochromatic wave, represented in the receiver
reference frame, where the source moves with the velocity u relative to the receiver, as

U(r,t) = Re{Uye? kor=w)}, (3.12)

The same wave can be represented in the source reference frame, where there is no

relative motion, as ‘
Ul(rg, t) = Re{Uyel Koro—wot) 1 (3.13)

In Eq. (3.12), r = ro+ ut is a position vector of a point receiver R which, in the source
frame, has the position vector r, see Fig. 3.4.

Figure 3.4: Illustrating the geometry for an arbitrary mutual motion of the source and
receiver.

As this is actually the same wave, one can write
U(r,t) = Ul(ro,t). (3.14)
It follows from Egs. (3.13) upon some rearrangement in the exponent that
Ulr,t) = Re{Uye! Kor—wh)} (3.15)

where

5 6
w=uwy+ ko -u=wy+ kgucost = wy (1—&—1“:;)b ), (3.16)
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is a general expression for a Doppler shifted angular frequency received at the receiver.
In Eq. (3.16), v is the speed of the wave and 6 is the angle the wave vector ky makes
with the source velocity u. Alternatively, in terms of linear frequencies,

v = (1+“COSG) : (3.17)

v

Notice that as cos€ > 0, implying that the source moves toward the receiver, the
detected frequency at the receiver is greater, and if cos 8 < O-the source moves away
from the receiver—it is less than the wave frequency of the source at rest. It is then
sometimes said in the context of electromagnetic waves that the light frequency of
a moving away source shifts to the “red”—because the wavelength increases—while it
suffers a “blue” shift for an approaching source.

Example 3.2. Show that the wavelength of a monochromatic light source shifts to
the blue (red), if the source moves toward (away from) the receiver.

Solution. It follows from Eq. (3.17) with cos 0 = %1 that v = vo(1 £+ u/c), where c is
the speed of light. Recall the definition of the wavelength, A = ¢/v and Ay = ¢/vy.
Hence, A = Mo/ (1t u/c) ~ Ao(1Fu/c), as u < cin most practical situations. Thus,
AN =X — Ao = Fhou/c; AN < 0if 0 = 0 (arriving source), and AN > 0if =7
(departing source).

In the limiting case of # = 0, Eq. (3.17) reduces to our “intuitive” result, Eq. (3.11).
Finally, if 6 = 7/2, i. e., the source moves orthogonally to the receiver, our general
expression (3.17) predicts no frequency shift altogether.

3.3 Plane electromagnetic waves in free space

In the absence of charges and currents, Maxwell’s equations in free space take the form

V-E =0, (3.18)
V-H=0, (3.19)
OH
E=—ug— 2
vV X Ho 5 (3.20)
and 9E
H=¢—. 21
V x €0 ot (3 )

Building on our discussion of plane waves of any nature, we look for plane-wave solu-
tions to the Maxwell equations in the form

E(r,t) = Re{Ege/ kT—«0} H(r,t) = Re{Hpe! & T—w0Y  (322)

By linearity of Maxwell’s equations in free space, we can drop the real part and deal
with complex phasors describing the waves directly. The real part can be taken at the
end of all calculations to yield physical (real) electric and magnetic fields of a plane
wave.
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To proceed, we require the following relations.
Example 3. 3. Show that for a plane wave given by Eq. (3.22), V- E = jk - E and
V X E = jk x E.

Solutions. In the Cartesian coordinates,

0 0 0 ) )
V-E = Foz— + Eoy— + Eo, — J(ksxtkyytk.z) ,—jwt
( L 0y8y+ Oaz>e c

= j(ky Eoy + kyEoy + k2 Eo,)e?®™+) = jk - E. (3.23)

The second relation is proven by analogy using the Cartesian coordinate representation
of the curl.
The Maxwell equations in the plane-wave form can then be rewritten as

kB =1 a2
=) 629

[k x Eo = wioHy |, (3.26)

and

]k x Hy = —weoEy \ (3.27)

In Eqgs. (3.24) — (3.27) we dropped plane-wave phasors on both sides.
Next, we can exclude the magnetic field from the fourth Maxwell equation leading
to
k x (k x Eg) = —eopow?Eo. (3.28)

Using the “bac-cab” rule on the l.h.s of Eq. (3.28), we arrive at
k(k-Eg) — k*Eg = —eouow’Ey. (3.29)
With the aid of Eq. (3.24), we obtain
(k? — poeow?)Eg = 0, (3.30)

implying that

’k:w GoﬂOZW/C‘ (3.31)

where we introduced the speed of light in vacuum

=3 x 108 | m/s. (3.32)

C =

1
Veolo

Equation (3.31) is a dispersion relation for plane electromagnetic waves in free
space; it relates the wave number to the wave frequency. The complex amplitudes
E( and Hy—which determine the directions of E and H-are not independent, but are
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related by the Maxwell equations (3.26) or (3.27). For instance, from the knowledge
of E( one can determine Hy using Eq. (3.26),

E
H, = M ’ (3.33)
Mo

where a;, = k/k and 7 is the free space impedance defined as

Mo = ? ~ 377 Q. (3.34)
0

By the same token, E( can be inferred from H( with the help of Eq. (3.27):

| Eo = —no(ay x Hy) | (3.35)

Example 3. 4. Show that E(, k and H; are mutually orthogonal for a plane wave
in free space.

Solution. It follows at once from the Maxwell equations, Eq. (3.24) and (3.25) that
Eo Lk and Hy L k. Taking a dot product of Eq. (3.26), say, with Eg we obtain, Eg -
(k x Eg) = (Eg X Eg) - k =0 = wpuo(Eo - Hy). It follows that Eq - Hy = 0. Thus,
EoL1H, k. See Fig. 3.5.

i

/ E
E

Figure 3.5: Mutual orientation of E, H and k of a plane wave propagating in free
space.

Definition. The time evolution of the electric field vector is called polarization.
Let us consider a plane wave propagating along the z-axis in free space. As, k = ka,,
and E Lk, the electric field in the phasor form reads

E(z,1) = Re{(a,| Eo. |70 + a,|Fo,|e?®0v)e? (k2= (3.36)

We will now show that, in general, the tip of the electric field vector moves around
an ellipse as the time evolves. This general polarization is called elliptic. To proceed,
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we rewrite the complex amplitude in the rectangular form as

FEoga, + Egyay, = (ay|Eog| cos ¢og + ay|Eoyl cos ¢oy)

U
+.7 (am|E0m| sin d)Om + ay|E0y‘ sin d)Oy) . (337)
\%

Note that U and V are not orthogonal which makes the situation tricky. We can how-
ever introduce a transformation from U and V to u, v involving an auxiliary parameter
0 such that

U+ jV = (u+jv)e?, (3.38)

It follows at once from Eq. (3.38) that

U =ucosf —vsind, V = usiné + vcosf. (3.39)
Inverting Eqgs. (3.39), we obtain

u=Ucosf+ Vsinb, v =Usinf — V cosé. (3.40)

We can now use our freedom to choose 6 wisely. In particular, choosing it such that
u - v = 0 (orthogonal axes), we obtain by taking the dot product of u and v,

2U - 1 2U -
u-v t —1( UV). (3.41)

tan29:W:>9:§ an W

Here we made use of the trigonometric identities, sin 26 = 2 sin # cos # and cos 20 =
cos? § — sin? §. By combining Egs. (3.37) and (3.38), we can rewrite our field as

E(z,t) = Re{(u + jv)el Fz—«t+0)}, (3.42)

Using the orthogonality of u and v, we can write the two orthogonal components of
the field, E, and E, as

E, = ucos(kz —wt + 0), E, = vsin(kz — wt + 0). (3.43)
It follows from Eq. (3.43) that
B | Ej

where u and v are given by Eq. (3.40) and 6 by Eq. (3.41). Eq. (3.44) manifestly
represents an ellipse with the semi-major axis making the angle 6 with the x-axis as is
shown in Fig. 3.6. The tip of E can move either clockwise or counterclockwise along
the ellipse; depending on the direction of motion of E, the polarization is left-hand
or right-hand elliptical. In the left-hand (right-hand) elliptical polarization, the fingers
of your left (right) hand follow the direction of rotation and the thumb points to the
wave propagation direction. Thus, for a general elliptic polarization, the electric field
amplitude takes the form

] E(z,t) = a,|Eoa| cos(kz — wt + ¢oz) + ay| Eoy| cos(kz — wt + o) \ (3.45)
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Figure 3.7: Illustrating plane polarization.

Although, in general, the electric field is elliptically polarized, there are two impor-
tant particular cases.
Definition. The electric field is said to be linearly polarized if the phases of two or-
thogonal components of the field in Eq. (3.36) are the same, ¢o, = ¢Poy.
In this case,

’ E(z,t) = (az|Eoz| + ay|Eoy|) cos(kz — wt + ¢o) ‘, (3.46)

and the electric field is always directed along the line making the angle
a = tan™*(Eoy/Eoz) (3.47)

with the z-axis as is shown in Fig. 3.7.

Definition. If the phases of the two orthogonal components in Eq. (3.37) differ by
7/2, and |Ey,| = | Epy |, the wave is said to be circularly polarized.

In this case

] E(z,1) = | Eo|[a, cos(kz — wt + ¢o) F a, sin(kz — wt + o)) \ (3.48)

In a circularly polarized wave, the E has the same magnitude but is moving along
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Figure 3.8: Illustrating circular polarization.

the circle. In the case of “-” sign in Eq. (3.48), E moves counterclockwise around the
circle and the wave is left circularly polarized; for the “+” sign it is right circularly
polarized.

Example 3. 5. Determine the polarization of the electromagnetic wave E(x,t) =
(ayA —a.B)sin(kx — wt).

Solution. The wave is linearly polarized at the angle § = tan™'(A/B) with the z-axis;
it propagates in the positive x-direction.

Consider the power flow associated with the plane wave, specified by the Poynting
vector, P = E x H. In general, both fields oscillate with rather high frequencies
such that a more sensible—and actually detectable—-measure of the power flow is the
time-averaged Poynting vector, defined as

(P(r)) = %/0 dtP(r,t), (3.49)

where T is the wave period. Using the fact that for any complex number, Re(z) =
(z + z*)/2, we can rewriting Eq. (3.22) as

E= % [Eoej(k-rfwt) + Egefj(k-rfwt)] : H= % |:H06j(k'r*‘ﬂt) + ng*j(k"'*‘”t)]
(3.50)

)

We can obtain for the instantaneous Poynting vector the expression

P = - (Ey,xHj+E;xH,))

1

1
4
+5 | (Bo x Hy)eX kr=wt) L (B x H;)e”f(k'f*wt)} . (351

It follows from Egs. (3.49) and (3.51) that the last two terms on the r.h.s. of Eq. (3.51)
average to zero as complex exponentials oscillate at twice the frequency and are aver-
aged over a full period of the wave. As a result, the average Poynting vector of any
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plane wave, regardless of its polarization, takes the form

(P) = JRe(By x H;) | (3.5

Example 3. 5. Determine the average Poynting vector of a plane wave H = (10a, —
20a,) sin(wt — 40x) A/m propagating in free space.

Solution. In free space, w = kc = 40x3x10% = 12x10° rad/s. The magnetic field can
be written in the phasor form as H = Re{(10a, —20a, )&’ (7/2+ke=wO) implying that
the plane wave is linearly polarized at the angle = — tan~(2) to the y-axis propa-
gating along the x-axis, aj, = a,. Here Hy = (10a, — 20a,)e’™/2. Using Eq. (3.35),
we obtain Eg = —ng[a, x (10a, — 20a,)]e’™/? = —ny(10a, + 20ay)ej”/2. Note that
E¢ - Hy = 0 as should be. Thus, (P) = —no[(10a, + 20a,) x (10a, — 20a,)]/2 =
0.25n0a, ~ 94.25a, kW /m?

Example 3.6. Show that the instantaneous Poynting vector of a circularly polar-
ized plane wave in free space is independent of either time or the propagation
distance.

Solution. For a circularly polarized plane wave, propagating in the positive z-direction,
say,

E = |Ey|[a, cos(kz—wt+¢o)La, sin(kz—wt+¢do)] = Re | Ey(a, F jay)ej(kz""t)} )

(3.53)
implying that
Applying Eq. (3.33), with Eq. (3.54), we obtain
. X E E
H, = M — —O(ay + ja,).
Tlo 7o
It follows that
E, .
H = Re | 2 (a, £ ja,)e/F* 1)
Mo
_ |Eo] .
= —ay cos(kz — wt + ¢o) F ay sin(kz — wt + ¢o)]. (3.55)
"o
Using Egs. (3.53) and (3.55), we obtain
| Eol® 2
P = ExH= , [(ag x ay) cos®(kz — wt + ¢p)
0
2 _ ‘EO|2
— (ay x ag)sin“(kz —wt + ¢g)] = a,——. (3.56)

Mo
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3.4 Plane waves in lossy media

We begin by making two assumptions: First, we assume that neither ¢ nor o is fre-
quency dependent, and second, we assume that electromagnetic wave absorption comes
only from the ohmic losses, implying that € is purely real. The constitutive relations
imply then

D =¢E, B =uH, (3.57)

and
J=0E. (3.58)

With these two assumptions and constitutive relations, the Maxwell equations in the
absence of free charges, p, = 0, state

V. E—0, (3.59)
V.-H-=0, (3.60)
OH
E= 2o 61
V x s (3.61)
E
V x H = oF + 6%. (3.62)

We seek a solution to Egs. (3.59) through (3.62) in the form of an inhomogeneous
plane wave propagating in the positive z-direction

E(z,t) = Re{Eqe 7?7V}, H(z,t) = Re{Hpe 7*+iwt), (3.63)

Here ~ is, in general, a complex propagation constant with the imaginary part de-
scribing the amplitude attenuation of the wave as we shall see. Hence the name in-
homogeneous plane wave. We can now introduce the complex wave vector I' such
that

I'=a.,y, vyz=T"-r. (3.64)

On substituting from Eq. (3.63) into Egs. (3.59) through (3.62), and using Eq. (3.64),
together with the properties established in Exercise 3.3, we obtain

a, - EO = 0; a, - H() = O7 (365)

and
~v(a, x Eg) = juwHy, (3.66)
—v(a, x Hy) = cEg + jewEg = jw (e — jj) Eo. (3.67)

Eliminating Hy from Egs. (3.66) and (3.67) we obtain
7?la. x (a, x Eg)] = pecgw?Eo. (3.68)
Here we introduced the notation

€off = € — —. (3.69)
w



With the help of Eq. (3.65) by analogy with the free space case, we arrive at the disper-

sion relation for the electromagnetic waves in lossy media

72 = —,LLCUQGQH = —w2e,u (1 — ja) .
€w

The latter can be represented as

v =(a+if)
PN 20 Y S
p=w 2 taz T

€l o2
a=w 2( 1+62w21)

as you worked out in your assignment 1.
Further, the electric and magnetic field amplitudes are related as

where

and

EQ = —n(az X HQ),

and
H, — (a. x Eo),
n

where 7 is a complex impedance of the lossy medium, defined as

_ | _m/e
=T
ew

The latter can be written in the polar form—see the solution to Example 1. 6-as

n = nle?® |,

where

{1 (u/)z} tan 20, = g
(&

(3.70)

(3.71)

(3.72)

(3.73)

(3.74)

(3.75)

(3.76)

(3.77)

(3.78)

Consider now a particular case of a linearly polarized in the z-direction plane
wave which propagates in the positive z-direction. In this case in view of Egs. (3.63),

(3.71), (3.77), and (3.75), we obtain for the electric and magnetic fields

X

’E(z, t) = a, Ege™ ** cos(fz — wt)
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Figure 3.9: Inhomogeneous plane wave propagating in a lossy medium.

and

H(z,t) = ay@e*”‘z cos(fBz —wt —6,) | (3.80)

ul

It is seen from Egs. (3.87) and 3.88) that in a lossy medium,

e The electric and magnetic field are harmonic waves with exponentially decaying
amplitudes;

o The magnetic field lags behind the electric field in phase by 8,,.

The field attenuation is measured in nepers per meter (Np/m); and attenuation of 1Np
implies the field amplitude is reduced e times. The wave power loss of 1 neper can be
expressed in decibels as

1Np = 20log;, e = 8.686 dB.

Next, let us evaluate the magnitude ratio of conducting and displacement currents
generated by the wave on propagation in the medium

OE
J. =0E; Ji=€e— = jewE. (3.81)
ot
Thus,
Il _ o _ tone| (3.82)
|Jd| ew

Eq. (3.82) defines the so-called loss tangent. Note that the loss angle 6 is related to the
aforementioned phase lag angle 0, viz.,

0 =26, (3.83)
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Figure 3.10: Illustrating the loss angle concept.

Depending on the size of the loss angle, two interesting cases emerge.
Lossless dielectrics, 0 = 0. In this case, one can set o equal to zero in all the above
expressions. We arrive at

|Eo = —n(ay x Hy) | (3.84)
and
H, — (B Eo) | (3.85)
U
where
B =wen | n=u/e| (3.86)

In particular, for a linearly polarized plane wave propagating in the z-direction, we
obtain
E(z,t) = a, Ey cos(Bz — wt), (3.87)

and g
H(z,t) = ayﬁ cos(Bz — wt). (3.88)

The wave is simply a plane wave of the wavelength

F=573) as

propagating with no loss and phase velocity

w C
== = . 3.90
B e ( )

Up

Good conductors, o /ew > 1. In this case, we can get approximately,

a:@:J%:%, (3.91)
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and

1+
=570 (=) a9

Here we introduced the skin depth by the expression

s— 2| (3.93)
oW

Thus, for a linearly polarized plane wave along the x-axis, say, we get
E(z,t) = a, Ege */? cos(fz — wt), (3.94)

and 5
H(z,t) = ay—oe_z/‘s cos(fBz — wt — m/4). (3.95)
n

For good conductors, 0 — o0, the skin depth is quite small. At the microwave fre-
quencies, for instance, ¢ ranges from 10~* mm to 10~2 mm; the fields do not penetrate
much into good conductors at the microwave or higher frequencies.

Example 3. 7. In a lossless nonmagnetic medium with ¢, = 4, a uniform plane
wave, E = 8cos(wt — 8z)a, — 6a,sin(wt — Bz) V/m propagates with the fre-
quency of 30 MHz. Determine 3, v, A, n and H.

Solution. 3 = w\/pue = \/ew/c = 2nv\/e./c = 2n/5m/s. It follows by defi-
nitions that X = 27/ = 5bm; v, = w/f = 1.5x10%m/s, and n = \/p/e =
no/+/€ = no/2. Next, E = Re{Eqe? =P} where By = 8a, + 6jay. Thus, Hy =
(a, x Eo)/n = (16/m0)a, — (12j/n0)ay. It follows that H = Re{Hpel “t=F2)} =
(16/m0) cos(wt — Bz)a, + (12/n0) sin(wt — Bz)ay.

3.5 Group velocity

Let us consider a dispersive nonmagnetic medium with € = e(w). We assume that all
fields have a harmonic time dependence,

E(r,t) = Re[E, (r)e 7] H(r,t) = Re[H, (r)e 7*%]. (3.96)
The constitutive relations at frequency w take the form
D, = ¢(w)E,, (3.97)

and
B, = poH,. (3.98)

Maxwell’s equations for the time-harmonic components are obtained from Maxwell’s
equations in the space-time representation with the replacement 9; — —jw, resulting
in

V-E, = p,/e(w). (3.99)
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V.-H, =0, (3.100)
V x E, = jwuoH.,, (3.101)

and
VxH, =J, — jwe(w)E,. (3.102)

We now explore a generic linearly polarized wave packet evolution in a dispersive
medium with no free charges and currents, p, = 0 and J, = 0. Phasor Maxwell’s
equations reduce then to

V-E,=0. (3.103)
V-H, =0, (3.104)
V x E, = jwuoH,, (3.105)
and
V x H, = —jwe(w)E,,. (3.106)

One can take the curl of Eq. (3.105) and use (3.106) to eliminate the magnetic field to
yield
V x (V x E,) = wupe(w)E,,. (3.107)

We look for a solution to Eq. (3.107) describing a linearly polarized wave packet, prop-
agating in the positive z-direction:

E(z, 1) :ax/ dﬂ/ dwE(B,w — we) e P2=wh), (3.108)

Here we introduced the carrier frequency w. and the envelope of the wave packet,
E(B,w — w,), centered around w,. On substituting from Egs. (3.108) into Eq. (3.107),
we obtain the relation

8% — WP pne(w)|E(B,w — we) = 0. (3.109)

Note that as 3 and w are treated as independent variables, the only way Eq. (3.109) can
be satisfied for all pairs of 5 and w is if

E(B,w —we) = Eg(w — we)d[B? — winge(w)]. (3.110)

Here § is a Dirac delta function. We recall the following property of the § function of
an arbitrary argument f(z)

3@ = 3 Tyl = ) G111

where {z;} are the roots of the function f(z), and the prime denotes a derivative. It
follows from Eqgs. (3.110) and (3.111) that

E(B,w) = Eoq(w—we)d[B—wr/ poe(w)] + Eo— (w —we)d[B+wy/ poe(w)] (3.112)
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As we assume that the wave packet is forward-propagating,
Ey_(w—w.) =0. (3.113)
The dispersion relation between 3 and w follows from Eqgs (3.112) and (3.113):

B(w) = wy/ poe(w). (3.114)

It follows at once from Eqs. (3.112), (3.113) and (3.108) that

E(z,t) = a, / dw Eo(w — w,)e?P)z=wtl (3.115)

—00

Here the propagation constant satisfies the dispersion relation (3.114).

A ¢

Ao << o,

S
S J

Figure 3.11: Narrow-band wave envelope.

Assume now that the wave packet has a carrier frequency w, far from any medium
resonances and its bandwidth Aw is sufficiently narrow such that Aw < w,. In this
approximation—-referred to as the slowly-varying envelope approximation (SVEA)-a
“fast” carrier modulates a “slow” envelope as sketched in Fig. 3.12. Under the circum-
stances, we can expand 3 in a Taylor series around w, and keep only first two terms of
the expansion:

B(w) =~ B + BL(w — we). (3.116)
Here 3. = B(w,) and 3., = 3’ (w.). Thus,
. 0 . ’
E(z,t) = ayel(Fezmwet) / dw Ey(w — w,)e I @mwe)(t=Fez) (3.117)
—o0

and on introducing the new variable, w’ = w — w, in Eq. (3.117), we obtain
E(z,t) ~ aggej(ﬂ“z_“’ct)/ dw' Eo(w)e 9@ (4=Fe2) (3.118)
It can be inferred from Eq. (3.118) using the shifting property of Fourier transforms
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Figure 3.12: Fast carrier and the slow envelope modulated by the carrier.

Figure 3.13: Distortionless propagation of the wave packet with the group velocity.

that at the adopted level of approximation, the wave packet profile remains unchanged;
it simply propagates as a whole to the right with the speed v, i. €.,

E(z,t) = E(0,t — 8.2) = E(0,t — z/v,). (3.119)
Here the group velocity is introduced viz.,
1 1 dw

vy = ﬁi = 7(1%(“)) = a5 . (3.120)

At the same time, the carrier propagates with the phase velocity

We
vy = (3.121)
P B(we)




Note that we can define the phase velocity of any monochromatic component with the
frequency w within the envelope as

Up = m

Note also that as long as the phase velocity is just a velocity of a phase of the wave
it can take on any value, even greater than the speed of light.
Example 3. 8. The ionosphere of earth contains a number of free electrons such
that it can be modeled as a nonmagnetic medium with a Drude-type permittivity,
€(w) = €o(1 — w?/w?). Show that the phase velocity in the ionosphere exceeds the
speed of light in vacuum.
Solution. By definition,

(3.122)

w 1 c
vp = = > c.

@)~ Vidw]  \i-aja

Example 3. 9. Show that the group and phase velocities are related as

dv
_ P
v =t g
or ;
vy = —2 .
g _ wdvy
vp dw

Solution. First, recall that v, = w/ (3 implying that w = (v, or 3 = w/v,. Eliminating
w, we obtain

dw d dv
=g = ag = g
Alternatively, eliminating 3, we get
1 1 Up
vy = = = . (3.123)

Note that the group velocity is related to the envelope propagation. The envelope
carries the wave packet energy and its propagation velocity can never exceed the speed
of light in vacuum. It also follows from Eq. (3.123) that

dvy,

* W

=0 = v, = vy, there is no dispersion;

d'Up . . . .
T < 0 = vy < v, dispersion is normal;

dvy,

7w >0 = vy > v, dispersion is anomalous.
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3.6 Reflection of plane waves at normal incidence

We consider a plane electromagnetic wave propagating along the z-axis in a dielectric
nonconducting medium with the constitutive parameters ¢; and pq (medium 1). The
wave is impinged normally on the interface z = 0 separating the medium from a con-
ducting medium characterized by €9, po and o. The situation is schematically depicted
in Fig. 3.14. As the incident wave is partially reflected back into medium 1 and par-
tially transmitted into medium 2, there will be reflected and incident waves in medium
I and a transmitted wave in medium 2.

~ A X
E.
1
Hi éK )
E g
r
H 2
A—im t A
A r
E%
1B B 7, Uy €50 O, 11, .
Medium 1 Medium 2 -

Figure 3.14: Normal incidence of a plane wave onto an interface separating transparent
and lossy media.

We can now write down the fields in the media. Hereafter, we are going to write
the fields in the complex form implying that the real part can be taken at the end of all
calculations. First, there is an incident wave in medium 1:

Ei(z,t) = Egel (Fiz—wit) (3.124)

and '
H;(2,t) = Hyel Fizmwit) (3.125)

where Eq; and Hy; are complex amplitudes of the electric and magnetic fields and g;
is the propagation constant. Assuming, for simplicity, that the incident field is linearly
polarized along the x-axis, we get

Eo; = Eoiaq, (3.126)
and since the for incident wave k; = k;a,, we obtain

z E i E 7

Hy, — (22 X Eoi) _ a, % (3.127)
U i

It can be inferred from Eqs. (3.124) through (3.127) that

Ei(z,t) = ay Ege Fizmwit) (3.128)
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and

Eoi k. .
H;(z,1) = a, —~ el (kiz—wit), (3.129)
i
By the same token, for the reflected wave,
E,(z,t) = a,Eg.e 7 Fratwrt) (3.130)
and 5
H,(z,1) = —a, —— e i(krztwrt) (3.131)

N
The minus sign in Eq. (3.131) is because the reflected wave propagates in the negative
z-direction, k,, = —k,a,. Also we have to flip the direction of the magnetic field if we
assume that the linearly polarized electric field does not change its polarization upon
reflection and E, H and k form a right-hand system of mutually orthogonal vectors.
The transmitted waves in medium 1 can be expressed in a similar fashion as

E(2,t) = ay Egel (12 7wet), (3.132)

and 5
Hy(z,t) = a, —tel (ez—wit), (3.133)

Mt

Next, the boundary conditions for the tangential field components at the interface
z = 0 state
Eir|:=0 = E2r[:=0, Hi,|.—0 = Hor|.—0. (3.134)
Since Eq. (3.134) must be satisfied at any instant of time we stipulate that
eIzt o = gmilkbrztend)| o = edluz—wdt)) (3.135)

It follows at once from Eq. (3.135) that

W = W, = Wy = W. (3.136)
Eq. (3.133), in turn, leads to
kl' = k’r == ]{31 = Wy/€E141, (3137)
and
N =N =m =/ p/e1, (3.138)
as well as
Ve =2 = B2 + jag, (3.139)
and

€
m=n2 =, luf/i. (3.140)
€W

The boundary conditions then imply

Eo; + Eor = Eo; (3.141)
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and 5 g g
0: — L0r _ 0t ) (3142)
m 2
Solving Egs. (3.141) and (3.142), we obtain for the complex reflection and transmission

coefficients, r and ¢, the equations

F _
p=—r R (3.143)
Ey; m + 72
and
E 2
p=0t A2 (3.144)
Eoi  m+mn
Note that
— (3.145)

Example 3. 10. Show that the average Poynting vectors on both sides of the inter-
face are equal.

Solution. Recall that (P) = 1Re(Eq x Hy). It follows that

Py = P+ (P =1 ('EOi'QagC ‘ ay> 1 (TZ'EW'Q% . ay)

2 un 2 m
1 Epil? 2n5| Eo; |2
Y °|2. (3.146)
2 m (. + 12)
By the same token,
1 t2|Ey;|? 25| Eo; |
(P2) = (P1) = 5 Eoil”, _ 2tmel B (3.147)

2 nm  (mtm)?

Thus, the r.h.s of Egs. (3.146) and (3.147) are equal which is a consequence of the
energy conservation, of course.

Let us now examine important particular cases when medium 2 is a perfect dielec-
tric, o = 0, or a perfect conductor, ¢ — oo. In the first case, both impedances are
real and there are transmitted and reflected homogeneous plane waves. In the second
case, 172 — 0, implying that Ey; = 0, Hy; = 0 and Ey,, = —Ej;. That is all power is
reflected back into medium 1. This situation is illustrated in Fig. 3.15. Thus,

Ei(z,t) = a, Ege’F17=wt) (3.148)
H,(z,1) = a,— e/ (=t (3.149)
for the incident wave, and
E,(z,t) = —a,Ege I (F1z+et) (3.150)
Eoi _.
H,(z,t) = ayn—oe_](klz+“’t). (3.151)
1
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Figure 3.15: Normal incidence of a plane wave onto an interface separating a dielectric
and a perfect conductor.

for the reflected one. The total electric and magnetic fields in medium 1 are then

] E, = Re(E; + E,) = 2a,|Eq;| sinky zsinwt |, (3.152)

and

| Eo;|
m

H, =Re(H; + H,) = 2a, cos kyzcoswt |. (3.153)

These are standing waves because the wave does not travel, but simply oscillates sepa-
rately in space and time.

Example 3.11. Show that standing waves do not transmit any power.

Solution. Let us work out the time-averaged power flow associated with a standing
wave.

| Eoi|?

(P) = (B x H) = a. =

sin 2k z(sin 2wt) = 0,

because sin 2wt yields zero upon averaging over a wave period T = 27 jw.

Example 3. 12. A right-hand circularly polarized wave, propagating in the posi-
tive z-direction is normally incident on a perfect conductor wall z = 0. Determine
(a) the polarization of the reflected wave and (b) the induced current on the con-
ducting wall.

Solution. (a) The incident wave can be written in the phasor form as E; = Re[Ey(a, +
ja,)e?F*=w] = Eycos(kz — wt)a, — sin(kz — wt)a,]. The reflected wave is then
E, = Re[Ey(a, + ja,)e 7 F=Tw4m] = Eylcos(kz + wt + m)a, + a, sin(kz + wt +
m)ay). Thus, the reflected wave is left-hand circularly polarized wave propagating in
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the negative z-direction. At the interface, dropping the harmonic dependence,

E E
H, = —a, x (a, + ja,) = —(a, — ja,), (3.154)
n m
and g 5
H, = —a, x (a, + ja,) = —(a, — ja,). (3.155)
n m
The boundary conditions imply,
Eq .
Js=—a, x (H; + H,) =2—(a, — ja,). (3.156)
Uit

3.7 Reflection of plane waves at oblique incidence

N

Medium 2

(1, ,)

Q>

Medium 1

(14, &)

Figure 3.16: Illustrating Snell’s law for oblique incidence of a plane wave.

We now explore refraction and reflection of plane electromagnetic waves at a flat
interface of two lossless media. Here we assume that the interface is flat with its normal
being along the z-axis. The boundary conditions at the flat interface z = 0 should hold
at any point in the xy-plane and at any instant of time ¢, implying that

eliarmat)| o = ellommwrt)| o = efler—wd)] . (3.157)
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It follows at once from Eq. (3.157) that
Wi = Wr = W = W. (3.158)

Let us further write down the wave vectors of the incident, reflected and transmitted
waves, assumed to be confined to the xz-plane, as

k; = k1(sinf;a, + cosb;a,), (3.159)
k, = ki(sinf,a, — cosb,a.), (3.160)
and
k; = ko(sin 6;a, + cos6;a,), 3.161)
where
ks = wy/esps = wng/c; s=1,2.
Here

ns = \/esps/eotto | (3.162)

is arefractive index in the sth medium. We can then infer from Egs. (3.157) and (3.159) —
(3.161) that the incidence and reflection angles must be the same,

Gi = 9,« = 91; 9,5 = 02, (3163)

and the well-known Snell law for the incidence and transmission angles must hold

n1sinfy; = nysin by |, (3.164)

There are two possible polarizations: transverse magnetic (TM) or parallel and trans-
verse electric (TE) or perpendicular which we are treating separately.

3.7.1 Transverse magnetic (TM) or parallel polarization

Consider first the TM case. The magnetic field is assumed to be polarized along y-axis,
H, = Hpa,. The relevant Maxwell equations, corresponding to Fig. 3.17, are

ks . HOS - O; ks . EOS =0. (3]65)

and
EUs = —775(3.5 X H()S). (3166)

Here the indices 1 and 2, (s = 1, 2), correspond to the media below and above the inter-
face, respectively, and a, = k,/k;. It follows from Maxwell’s equations, Egs. (3.165)
and (3.166) that the electric and magnetic fields can be represented as

Hi (r7 t) - Hoiay ej(ki'l‘—wt)
E;(r,t) = n1 Hoi(az cos ) — a, sin ;) ki T=wt), 167
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Figure 3.17: Oblique incidence of a TM plane wave.
for the incident wave;
H,(r,t) = —Hp,a, ! krm=eb)
E,(r,t) = m Ho,(ag cos by + a, sin ;) e krr=wt), (3.168)
for the reflected wave and
H,(r,t) = Hya, el (kir—wt)
Ei(r,t) = noHoi(a, cos Oy — a, sin 0) el (ke r—wt) (3.169)

for the transmitted wave. Here we assumed that a linearly polarized plane wave does
not change its polarization upon reflection. As a result to keep the correct mutual
orientation of E, k and H we must assume that H changes its direction upon reflection,
hence the minus sign in front of H,. in Eq. (3.168).

The boundary conditions for the tangential components of the fields across the

interface state
Hy; — Ho = Hot (3.170)

and
1 Ho; cos 01 + my Ho,- cos 07 = naHo cos 5. (3.171)

It then follows from Eqgs. (3.170) and (3.171) that

7)2 cos B — 11 cos 01
HOT =

= Hy;, 3.172
71 cos 01 + 12 cos O 0 ( )
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and

211 cos 64
Hy = ;e 3.173
ot 71 €os 01 + 12 cos O 0 ( )
Using (3.166) we arrive at the expressions for the electric fields in the form
Eoi =mHoi,  Eor =mHor,  Eor=n2Ho. (3.174)

Finally, the complex reflection and transmission coefficients can be represented as

FEy.  mocosby —mp cosby
M =T Ey; micosfi +mocosfsy | ( )
and
FEo; 219 cos 61
t =t = = . 3.176
™ I FEy; 11 cos 61 + 12 cos O ( )

Sometimes, the real transmission and reflection coefficients for energy fluxes are intro-
duced as well by expressions

Rru = |rrum?, Trar = [trar]?. 3.177)

Equations (3.175) and (3.176) are celebrated Fresnel formulas for the TM case.
As a limiting case, let us consider the case of normal incidence, §; = 65 = 0. It
then follows from Egs. (3.175) — (3.177) that

— P
_ o D (3.178)
n + 12 m + 12

n

Another instructive particular case corresponds to the Brewster angle #5 at which
rry = 0, 1. e., there is no reflected TM wave. In this case,

rry =0 = macosfy =1y cosfp,
and using Snell’s law, we arrive at
n5[1 — sin® Op(p1e1/paez)] = ni(1 — sin® fp).

A simple algebra then leads to

1 — pzer/pien

sinfp = (3.179)
B 1— (61/62)2
In a practically important case of nonmagnetic media, 1 = s = po,
| tan 0 = no/n; | (3.180)

57



A
Medium 2 B
(llzl (92) E[ 5 k(
0, Ay
7= 0 » X
er
Medium 1
(1, &)
- 0 Er
H
k,

Figure 3.18: Oblique incidence of a TE plane wave.

3.7.2 Transverse electric (TE) or perpendicular polarization
In the TE case, Eg = Fpa, and the magnetic field is given by
(as X Eos) .

Hys = —2 =200 g1 9, (3.181)
Ns

We thus obtain for the incident, reflected and transmitted fields the expressions

Ei(ra t) = Eol'ay ej(ki'rfwt)

FEo; . (ks
H;(r,t) = 0 (—ag cosfy + a,sinb) el(kir “’t), (3.182)
Uit
E.(r,t) = Ep ey el (krr—wt)
Eo, . ; _
H,(r,t) = —O(az cosfy + a, sin ;) el (krr—wt) (3.183)
m
and
E¢(r,t) = Eoiay el (ker—wt)
E )
H,(r,t) = ﬁ(—az cosfs + a, sin 6s) el (ker—wt) (3.184)
2

The continuity of tangential components of electric and magnetic fields across the in-

terface leads to
Ey; + Eo = Eyy, (3.185)
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and

Eoi  Eor E,
<_ 0i , 0 )Cosglz_otcoseg. (3.186)
1 1 72

Solving the last pair of equations, we arrive at the complex reflection and transmission
coefficients in the form

== = et | 6187
e =1t = gz: - m cojzj szlcos 01 | (3.188)
The Brewster angle is determined by the condition,
rre =0, (3.189)
implying that
M2 cos g = 1 cos fa, (3.190)
or Using the Snell law, we can obtain the equation
n5(1 —sin? @) = 11 (1 — sin® ;). (3.191)
Using the Snell law, we can obtain the expression
Sinfp = (| Lo Fee/mec (3.192)

1 —(p1/p2)?”

However, in virtually any practical case, the media under consideration are nonmag-
netic, (1 = po. It then follows at once that Eq. (3.192) can never be satisfied resulting
in the absence of the Brewster angle for the TE polarization.

Example 3. 13. A plane EM wave propagating in a lossless dielectric nonmag-
netic medium with ¢, = 9, which occupies the half-space z < 0, is impinged on
a plane interface z = 0 separating the medium from the other lossless nonmag-
netic medium with ¢, = 9/2. The magnetic field of the incident wave is given,
H(r,t) = a, cos(10% — ax — a+/3%). Determine (a) the angle of incidence, (b) the
transmission angle, (c¢) the magnitude of a, (d) the wave polarization (TE/TM),
and (e) the incident and reflected fields E,(r, ¢) and E,.(r, t).

Solution. (a) First, k; = aa, + a\/3a.. The wave propagates at the angle 6, to the
2 axis such that tan 0, = 1//3. Hence, sinf = 1/2, implying that 0; = 0, = /6
from the Formula Sheet table. (b) Using Snell’s law, sinfy = /2/2, implying that
Oy =m/4. (c) Next, ky = wy/e1i1 = wy/e1/c. Thus 2a = 10 = a=5. (d)
H is normal to the plane of incidence, implying that the wave is TM polarized. (e)
H;, = Re[Hy;e/ %), where Hy; = ay. Thus, Eo; = —mlag; x Ho), where
ap; = 3(a, + V3a.). It follows that

Eo; = _Q\Z%[(am + \/§az) X a,] = 207r(\/§a$ —a,),
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which is purely real. Therefore,

Ei(r,t) = 207(V/3a, — a.) cos(10% — 5z — 5v/3z2).

Using the expression for the TM reflection coefficient with 1 = 19/3, 112 = 1o V2 /3,
cosf = \/3/2 and cos 0y = \/§/2, we obtain

rTM = 2-V3
M B
The reflected field is then
2-V3
E.(r,t) =20n—— \/gaz —a,)cos(10%t — 5z + 5v/32).
(r.8) = 20m ) cos( )

3.7.3 Total internal reflection

Consider now the case of total internal reflection, ny > ns. It follows from the Snell
law that sinfs = (n1/ns)sin 6y, implying that for any angle greater than a certain
critical angle,

0. = sin"!(ng/n1) |, (3.193)

the sine of the angle is greater than unity. The latter implies that 8, becomes complex
with a purely imaginary cosine such that

2
cos By = jy |k sin® 6, — 1. (3.194)
ny

We assume, for simplicity that the medium is nonmagnetic. It then readily follows
from Eqgs. (3.175) and (3.194) that

n1 cos Oy — ny cos 1

TTM = (3.195)

N1 cos by + nycosf;

It can then be inferred from Eqs. (3.194) and (3.195) that the reflection amplitude of a
totally reflected TM wave can be expressed as

’FTM — ¢~ 2j%T™ ‘7 (3.196)

where the phase is given by

2 2 2
niy/nysin“ 0, —n
1 1 1 1 2

¢rM = tan~ (3.197)

n3 cos 6,
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Using Eq. (3.194) in Eqgs. (3.173) and (3.174), we can derive the expressions for
complex amplitudes of the transmitted electric and magnetic fields as

2F i 2 0 2
E()t(z) _ 0 (nl/nQ)ZCOS 1 [_az sin 0, + jag, <n2) % Sil’l2 0, — 1‘|
ng cos 01 —l—jnu/% sin?6; — 1 1 3
2

2
X exp (—kgz L sin2 g, — 1) 7 (3.198)
ny
277/2H(]i COS 91
ng cos 01 —i—jnM/Z—zsin2 0 —1
2

2
X exp (—kzz W) : (3.199)
na

Next, let us determine the magnitude and direction of the energy flow specified by the
time-averaged Poynting vector,

and

Hy(z) = a,

(Pi(2)) = %Re[EOt(z) x HE, (2)]. (3.200)

We obtain, after some algebra, the following result

2«13 | Eoi|? sin 26, cos 6 2
(Pe(2))rum = 2,y | By " sin 21cos ! exp | —2koz n—ésin2 0, —1].
n [n% cos? 0y +n? (Z—% sin® 6y — 1)} na

(3.201)
It can be concluded from Eq. (3.201) that the energy of the wave incident at an angle
greater than the total internal reflection angle does not flow into the less optically dense
medium. Rather, it propagates along the interface separating the two media, exponen-
tially decaying in the direction normal to the interface.
By analogy with the TM case derivation, the reflection amplitude for total internal
reflection of the TE polarization is given by

Trp = e 2¢TE | (3.202)
where
n% sin? 6, — n%
¢rE = tan~! : (3.203)
nq cos 01

The corresponding expression for the Poynting vector is

|2 n2
exp | —2koz (| —5sin®6; — 1] . (3.204)
na

a,n3| Eo;|? sin 20; cos 6;

Mo (n% - ”%)

(Pi(2)) e =
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Chapter 4

Quasi-static fields

4.1 Quasi-static approximation
We consider time harmonic electromagnetic fields
E(r,t) = E,(r)e 7%, 4.1

and
H(r,t) = H,(r)e 7" 4.2)

Assuming the he medium is linear and isotropic, and nonmagnetic, but not necessarily
homogeneous, we will have the constitutive relations for the harmonic components of
the electric and magnetic flux and current densities as

D, (r,w) = ¢(r,w)E,(r) B, (r) = poHy(r), 4.3)

and
Ju(r,w) = o(r,w)E,(r). 4.4)

With the aid of Egs. (4.1) through (4.3), we obtain the Maxwell equations

V- [e(r,w)E] = 0

=) w0

|V x By, = jwpoH, | @7

, 4.5)

and

|V x H, = o(r,0)E, — jwe(r,w)B, | (4.8)

The quasi-static situation arises in two guises: the “traditional” (circuit theory) and
“modern” (near-field). In particular, if one introduces a characteristic system size L,
the quasi-static approximation is relevant whenever the phase an electromagnetic wave
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picks up on traversing the system is small compared to 2, that is kL < 2, which is
synonymous with the following

L
%7<1. (4.9)

The criterion (4.9) works at sufficiently low frequencies, below 10 MHz, say, for typical
circuit architectures of a few-centimeter to few-tens-of-centimeter sizes. Indeed, take,
for example, L ~ 30 cm and v ~ 10 MHz, vL/c ~ x107 x 30/3 x 10*° ~ 1072 « 1.
This situation takes place in the low-frequency circuit theory. Another possibility arises
whenever a system size is actually very small. For instance, for nanoscale systems,
L ~ 107" m, (1 nm) even at optical frequencies v ~ 3 x 10** Hz, A\ = ¢/v ~ 10~ m
(1pm) the criterion (4.9) holds and it can be rewritten as

% < 1| (4.10)

Regardless of the actual physical situation, the quasi-static limit can be formally ob-
tained by considering the limit of w = 0. In this case, Egs. (4.5) to (4.8) reduce to

V- [e,(r)E] = 0], @.11)

=0 @1
B =0] w1

’v x Hg = Us(r)Es 4.14)

and the actual fields E and H are given in terms of the static fields E; and H; as

|E=E,e 7, H = H,e 7', (4.15)

and the static conductivity o4(r) = o(r,0) is introduced. The permittivity must also
be replaced with its dc limiting value, e4(r) = €(r,0).

Implication. In a quasi-static limit, spatial distributions of time-harmonic electric
and magnetic fields are those dictated by electrostatics.

Since the static limit plays such an important role for low-frequency (or nanoscale)
time-harmonic electromagnetic fields, we examine it more closely. Hereafter, we will
drop the subscript “s”. It follows at once from Eq. (4.13) and the fact that curl of
a gradient is equal to zero that the electrostatic field can be expressed in terms of a
gradient of a scalar function which will refer to as the scalar potential V' as

E= VvV (4.16)

where the gradient can be expressed in the Cartesian coordinates as

ov ov ov
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The minus sign in Eq. (4.16) is a matter of convention as we will see shortly. To provide
a geometrical interpretation of the gradient, we examine the scalar field change as one
moves from one point in space to another infinitesimally closed point. The situation is
illustrated in Fig. 4.1. It follows that

z

E(x+dx,y+dy,z+dz)

/O =y
X

Figure 4.1: Illustrating the evaluation of the gradient.

ov ov ov

On the other hand the infinitesimal distance between the points is
dr = a,dz + aydy + a.dz. (4.19)
It can be inferred from Eqs. (4.17) through (4.19) that
dV =VV .dr = |[VV||dr]| cos ¢, (4.20)

where ¢ is the angle between the gradient vector and the displacement vector dr.
Consider now an equipotential surface on which V' = const. For any two points
on the equipotential surface, dV' = 0. It then follows from Eq. (4.20) that the only way
for the r.h.s to be equal to zero for any dr, is cos ¢ = 0 implying that VV must be
orthogonal to any displacement vector lying on the surface. Hence the gradient must
be normal to the surface.

Geometrical interpretation of the gradient I. The gradient of a scalar potential is
always normal to the surface.

As a result gradient can be used to determine a unit normal to a surface, see Fig 4.2.
In the electromagnetic context, the electrostatic fields are always normal to the corre-
sponding equipotential surfaces as is illustrated in Fig. 4.3.

Example. 4. 1. Find a unit normal to the surface y = 22 at the point (2,4, 1).
Solution. The equation of the surface is y — x> = 0. One can then introduce a scalar
field ®(x,y) = y — x® which is constant on the surface. Working out the gradient
of ® ar (2,4,1) gives, V& = —2za, + a, = —4a, + a,. The unit normal is then
a, = +VO/|VP| = +(—4a,/V1T7 + a,/V17).

Next, dV' is maximal in the direction in which VV is parallel to dr. It can then be
inferred that

Geometrical interpretation of the gradient II. Gradient of a scalar field points to
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Figure 4.2: Illustrating the geometrical interpretation of the gradient.

- E
E —

/ ////veonstc

/MZ/VW
I

Figure 4.3: Electrostatic field and its equipotential surfaces.

the direction of the maximal change of the field.

Let us now briefly discuss the physical interpretation of the introduced scalar poten-
tial V. A point charge ¢, placed in an electrostatic field, experiences the force F. = gE.
The work done by an external agent to carry the charge from point A to point B in the
field is

B B B
WABz—q/ dI’-Ezq/ dr-VV:q/ dVZVB—VA. (4.21)
A A A

Thus, the work done by an external agent to move a unit charge between the points A
and B is given by the potential difference:

WAB/q = VB — VA. (4.22)
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Clearly, if Vg > V4, Wap > 0, the external agent must do (positive) work to bring
the charge to a point with a higher potential (just like we have to work—and sweat—to
elevate an object in the gravitational field of earth). We chose a minus sign in Eq. (4.23)
to conform to this (physically meaningful) convention. Although it is the potential
difference that has a direct physical interpretation, one can also introduce a potential
at a given point relative to a reference point. It is convenient to take the latter be far
removed, effectively be in infinity and let V, = 0. It then follows that the work done
by an external agent to bring a unit charge from infinity determines the potential,

! w2

There are two important corollaries of Eq. (4.16) and (4.21)
Corollary 1. The work done to move a charge in an electrostatic field does not
depend on the path.
Corollary 2. The work done to move a charge in an electrostatic field along a
closed path is zero.
The first corollary follows at once from the fact that the performed work depends only
on the potential difference between the two points, not on the actual path. The second
flows from the first by noticing that if the path is closed, the end points must be the
same resulting in zero overall work. Both corollaries are useful for solving practical
problems.
Example 4. 2. Determine the work done to move a unit charge in the field E =
a,y + a,x from point (1,2, 1) to the point (3,4, 1).
Solution. The field is clearly electrostatic because V x E = 0. Since the work does
not depend on the path, we break the path into two intervals, (1,2,1) — (3,2,1) and
(3,2,1) — (3,4,1). On the first interval, dl = a,dx and W1 = — f13 ydr = —2x2 =
—4 J. On the second interval, dl = a,dy and Wy = — f24 dyxr =3 x 2= —6J. The
total work is then W = W1 + Wy = —10 J.

Alternatively, we can first determine the potential,

ov ov

EEAS Ey=x=——. 424
9 y =1 By 4.24)

It follows by integrating the first equation that V(z,y) = —xy + F(y) where F' is
to be determined. Substituting this into the second equation, we arrive at F'(y) =

0 = F(y) = const. Thus V(x,y) = —xy + const. The work done to move a unit
charge can then be worked out from the definition: W = Vo —V; = —12+2 = —10. J.

Finally, we observe that by combining Eqs. (4.16) and (4.11), we obtain the general
quasi-static Laplace’s equation

V- [e(r)VV] =0}, (4.25)

For homogeneous media, ¢, = const, the general Laplace’s equation simplifies to
vV =0 (426)
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where the Laplacian on the Lh.s. is defined in the Cartesian coordinates as

2 2 2
v22i+i+ 8

=5 tap o 4.27)

Eqs (4.25) or (4.26) allow one to reduce the problem of finding an unknown vector field
to that of figuring out an unknown scalar field which has one third as many unknown
variables!

4.2 Capacitance, conductance and inductance

We now introduce several lumped circuit parameters that are frequently encountered in
low-frequency situations.

Definition. An arrangement of two identical conductors carrying equal and opposite
charges which are separated by a dielectric medium is called a capacitor, see Fig. 4.4.
The conductors are referred to as capacitor plates. The capacitance C' of a capacitor

/++ T
+ ++ T+Q +

/i —

Figure 4.4: Tllustrating a generic capacitor.

carrying a charge () for given voltage Vj between the plates is defined as the ratio

_Q
- =

C (4.28)

Capacitors are used to store charges. In this connection a natural question arises: What
is the electrostatic energy stored in a capacitor? To answer the question, we shall
determine the energy of a charged system. By the energy conservation law, the latter is
equal to the work done to assemble a given charge configuration.

We consider first a simple system containing just three point charges, ()1, @2, and
@3, located at the points Py, Py, and Ps with the potentials V7, V5, and V3, respectively.
There is no work done to bring charge (71 from infinity to the point P; since there are
no other charges to influence such a move. Thus, W7 = 0. However, the work done to
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move charge ()5 from infinity to its location is Wy = Q2 V12 where V75 is the potential
generated at the position P» by the charge at the position P;. In general, we can denote
the potential generated by the i’th charge (i=1,2,3) at the position P;, (j=1,2,3) by V;.
By the same token, the work needed to be done to move charge (3 in the position
will be W5 = Q3(V13 + Va3). The overall work can then be expressed as
We =0+ Q2Vi2 + Q3(Viz + Va3). (4.29)
If we reverse the order, we can represent the same amount of work as
We =0+ Q2V32 + Q1(Va1 + Va1) (4.30)
It follows by adding Egs. (4.29) and (4.30) term by term that
2We = Q1Vi + Q2V2 + Q3V3, (4.31)
where V} is the total potential at the point P;. It follows that

We = 5(Q1V1 + Q2V2 + Q3V3). (4.32)

Generalizing to N charges we obtain

W, =15 QuVil, (4.33)

which is the interaction energy of a system of point charges. For a continuous charge
distribution, the interaction energy can be further generalized to yield

W, =1L [ dop,V | (4.34)

for a volume charge and

We =1 [dSpsV |, (4.35)

for a surface charge distribution.
We can now express the energy stored in a capacitor in terms of its capacitance. We
begin by writing down the interaction energy of the charges on both plates as

We = L([s, dS psiVi + [5, dS psaVa). (4.36)
In Eq. (4.36), ps1 and pg2 are surface charge densities on each plate. Since in the static

situation, there are no currents on the plates, each plate is an equipotential surface and
we can factor out V; and V5 from the integrands on the r.h.s of Eq. (4.36), leading to

We =5(Vi [5, dS ps1+ Va [, dS ps2). (4.37)

Next, the total charges on the plates are equal and opposite, implying that

/ dS ps1 = */ dS ps2 = Q. (4.38)
Sl SQ
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It can be inferred from Eqs. (4.37) and (4.38) that

W, = 1QVh = 102 = 3@?/C ], (4.39)

where Vy = V7 — V3 is the voltage across the plates.
On the other hand, the assembled charges generate the electrostatic field inside the
capacitor with the energy
We = 3 [, dveE?. (4.40)

By energy conservation,

1
10V2 =1 [ dveE?, = |C = W/dveE2 : (4.41)
0 Jv

Eq. (4.41) provides a practical way to calculate the capacitance of any electrostatic or
quasi-electrostatic system. The algorithm is rather simple:

1. Determine the scalar potential solving the Laplace equation (4.26);
2. Find the electric field with the help of Eq. (4.16);
3. Use Eq. (4.41) to figure out the capacitance.

The formula stemming from the energy balance consideration is actually much simpler
to use than the definition of capacitance (4.28).

In cases involving currents, there are two more important circuit parameters.
Definition. Conductance G is the ration of the total current through the conductor to
the voltage between the conductor ends,

I
G=—| 4.42
o (4.42)
In case all currents are conduction currents, Eq. (4.42) reduces to
1
G=1 / (dS - E)o | 4.43)
Vo Js

To find the conductance for a given voltage between the conductor ends you can
1. Determine the scalar potential;
2. Find the electric field and the corresponding current density;
3. Find the total current through the conductor cross-section;

4. Apply Eq. (4.42) to obtain the conductance.
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Figure 4.5: Tllustrating a generic indictor.

Definition. Inductance L is the ratio of the magnetic linkage through a closed loop
(or loops) to the current circulating in the loop(s). The conductors carrying currents,
which generate magnetic fluxes through their cross-sections, are known as inductors,
see Fig. 4.5.

The inductance is then defined as

)\ N
=—=—/dS-B 4.44
L=7 I/s ’ @4

where N is the number loops placed in close proximity of each other. In case the
current is due to conduction only,

N [4dS-B

L= fs(dS ‘E)o [

(4.45)

Similar to the capacitance calculation, it is useful to apply energy balance considera-
tions to work out inductances of various inductors. One the one hand, we know from
the circuit theory that the energy associated with each inductor is

W = 5LI2. (4.46)
On the other hand, this energy is stored in the magnetic field of the inductor, hence

W =3 [ dvpuH?. (4.47)

Egs. (4.46) and (4.47) imply that

1
L= = / dv pH? |. (4.48)
v

Thus to determine the inductance of an inductor one can
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1. Find the scalar potential;

2. Determine the field and corresponding current density;

3. Calculate the total current through the conductor cross-section;
4. Solve Ampere’s equation (4.14) to determine the magnetic field;
5. Apply Eq. (4.48) to find the inductance.

We will now illustrate the use of Eqs. (4.41), (4.43), and (4.48) to calculate some cir-
cuit parameters of a simple arrangement shown in Fig. 4.6.

Example 4. 3. Determine the capacitance and conductance of the system shown
in Fig. 4.6 at low frequencies. The voltage between the plates is 1 coswt. The
permittivity and conductivity of the material between the capacitor plates are ¢
and o, respectively.

Solution. We look for quasi-static solutions for the fields with the harmonic time de-
pendence. The spatial field distributions can be found by solving the static Maxwell’s
equations. It follows from the problem symmetry that the potential must depend only
on the x-coordinate. Thus,

W
/)
|
, L y
dL ) T T—’ z
V =V, cos(at)

Figure 4.6: Illustrating the arrangement for Example 4.3.

d*v

dx?
subject to the boundary conditions, V(x = h) = 0 and V(z = 0) = V{. The solution
to Eq. (4.49) subject to the boundary conditions is

=0, (4.49)

V(z) =Vo(h —x)/h, (4.50)
implying that
E=-VV =a,V,/h. (4.51)
It then follows that the electrostatic energy between the capacitor plates is
eV
W, = / dveE? /2 = ﬁwlh. (4.52)
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On the other hand,

We = %CV027
implying that l
€w
C=—.
h

Next, the current density,
J=0E =a,oVy/h.

The total current between the plates is then,

I:/dS-JzaVOwl/h.
s

Thus,
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Chapter 5

Applications

5.1 Transmission Lines

5.1.1 Transmission line equations

Transmission lines (TL) are used to guide electromagnetic wave propagation to en-
hance efficiency of power delivery from a transmitter to a receiver(s). There are four
major types of transmission lines, see Fig. 5.1

microstrip

Figure 5.1: Types of TLs: (a) Coaxial cable, (b) two-wire line, (c) parallel-plate, and
(d) microstrip line.

e Parallel-plate lines, also referred to as strip-lines;

e Two-wire lines (power lines or telephone lines);
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e Coaxial lines (TV cables, electronic cables);
e Microstrip lines.

All can be characterized in terms of the voltage between the two conductors and the
current along the conductors as is schematically displayed in Fig. 5.2. In general,

Y

Y

Figure 5.2: Transmission line description in terms of the voltage across and current
along the line.

f =10GHz

Figure 5.3: Ilustrating low-and high-frequency regimes of TL operation.



the quasi-static approximation only applies to transmission lines operating at relatively
low frequencies. As an example, take the operating frequency of a few tenths of hertz,
f = 60 Hz, say. The operating wavelength, associated with this frequency, is A ~
¢/f = 5000 km. Thus, for a section of the transmission line of I = 100 m, [/\ =
2 x 107° < 1. The quasi-static approximation works well: V; = V5 along the entire
section. This situation is displayed in Fig. 5.3(a). On the other hand, for a transmission
line operating at f = 10 GHz, say, A ~ ¢/f = 3 cm. For a three-centimeter long line
section, /A = 1 and V; # V5 for any two points within this section as is depicted in
Fig. 5.3(b).
All transmission lines are characterized by four circuit parameters:

e Ris afinite resistance per unit length 2 /m along the current carrying (imperfect)
conductors;

e (G is a finite conductance per unit length .S/m between the two (imperfect) con-
ductors making up the line;

e ('is a finite capacitance of the line per unit length, F'/m;
e [ is the finite inductance of the line per unit length, H/m.

The transmission line equations can be derived from the circuit model displayed in
Fig. 54.

1(z,t) RAz LAz 1(z+Az,t)
> o)
V(z,t) GAz CAz V(z+Azt)
o o)
z 7+ Az

Figure 5.4: An equivalent circuit model for TL.

First, applying the voltage Kirchoff’s law to the closed circuit, we obtain

(2, t
v(z,t) = i(z,t) RAZJrLAzaZ(aZ’ ) +v(z+ Az, t). (5.1)
It follows from Eq. (5.1) that
v(z+ Az, t) —v(z,t) _ i(z,t)
— = L—=. 2
A, Ri(z,t) + 5t 5.2)
In the limit Az — 0, we arrive at the first transmission line equation
ov 01
— =—-Ri—L—| .
0z R ot (5-3)
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Applying the current Kirchoff’s law to the circuit node in Fig. 5.4, we obtain

0v(z + Az, 1)

i(z,t) =v(2,t)GAz + CAz 5 +i(z 4+ Az, t). (5.4)
Eq. (5.4) can be rearranged as
i(z+ Az, t) —i(z,t) . ov(z + Az, t)
- . =Gi(z,t)+C — (5.9

In the limit Az — 0, we arrive at the second transmission line equation

01 ov

Egs. (5.3) and (5.6) are the generic transmission line equations.
We now seek time-harmonic solutions to Egs. (5.3) and (5.6) in the form

v(z,t) = V(2)ed*t, i(z,t) = I(2)e?". 5.7

On substituting from Eq. (5.7) into the transmission line equations, we obtain

% = —RI(z) — jwLI(z) = —ZI(2), (5.8)
and il
- = -GV (z) — jwCV(z) = =YV (2). (5.9)

Here we introduced

e | Z = R+ jwL |, the complex impedance per unit length, Q/m,
e | Y = G + jwC |, the complex admittance per unit length, S/m.

Figure 5.5: Circuit representation for a general TL.

The general solutions to Egs. (5.8) and (5.9) can be obtained by eliminating one of
the variables in favor of the other. For instance, eliminating the current, we arrive at
a2V

ﬁ_ 2‘/':07 fy:\/YZ:a+jﬁ7 (510)
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with the solution,

V(z)= V{Pe + v TDer® | (5.11)
———

incident wave reflected wave

Here ~y is a complex propagation constant. The forward-propagating part corresponds

to the

incident wave, while the backward-propagating one to the reflected wave. It can

be inferred from Eq. (5.8) that

1dv
I(z) =~ (5.12)

On the other hand, a general solution for the current is

I(z)= I§Pe s + 17V (5.13)
—— ——

incident wave reflected wave

Egs. (5.11) through (5.13) imply that

where

9 — vz, 157 = vz, (5.14)

Zo = \/g , (5.15)

is the characteristic impedance of the transmission line.
Consider now two important particular cases.

1.

Lossless TL:
R=G=0. (5.16)

In this case, « = 0 and 3 = wv/ LC. It follows that the phase velocity, v, =
w/p =1/vLC. Also, the TL impedance, Zy = y/L/C.

Distortionless TL:
R

ek (5.17)
In this case,
a=R\C/L, 8=wVLC. (5.18)

It is again seen that there is no dispersion, v, = w/B# = 1/v/LC, and the TL
impedance is the same as that for a lossless line, Zo = +/L/C. However, a
distortionless line need not have zero loss, and hence it is a more realistic case.
In practice, telephone lines are required to be distortionless. Lossless lines—or the
closest approximation available in reality—are desirable for power transmission.

Example 5. 1. Show that at high frequencies R < wl and G < wl,

R /C G |L ,
7—(2 f—i_? C>+jvaC.
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Obtain a similar formula for 7.
Solution. Use the definition, v = \/(R + jwL)(G + jwC). It follows that

ol ) )

Expanding in powers of small parameters jwL/R and jwC' /G using

(I+e)"~14ne for e,

N]w\/fc<1+13> <1+1G)7

2 jwlL 2 jwC

and keeping only first terms in both small parameters, we obtain

1 R 1 G . R /C G |L
MVLC<1+L+2M>_]MLC+<2VL+2\/C>'

By the same token,

g0 =L LBl L R G
°~ V¢ 1+G/jwC — V C jwl  jwC’
| L . R . G
Zo = C(l_J2wL+ 2wC’>'

Example 5. 2. Given Zj, a, and 3 of a lossy transmission line. Assuming that 7,
is purely real, determine R, L, C and G.
Solution. v = a + j(. Observe that

,-y:\/xi, ZOZ\/Wa

where x = R+ jwL and y = G + jwC. It follows that

we obtain

Thus,

v =y, Zg =z/y.

Hence,
y = /2o, z = Zp.

Separating real and imaginary parts, we obtain the TL parameters,

R = Re(vZy) = aZy, G = Re(v/Zp) = o/ Zy.

and

L=Im(vZy/w) = BZ/w, C=Im (cu’yZo> = wiZo'
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5.1.2 Input impedance, reflection coefficient, and power

Recall that the time-harmonic waves on a transmission line are determined in terms of
the voltages and currents:

V(z) =V Pe > 4+ v e, (5.19)
and (+) ()
1% v
I _ 20 vz _ 20 vz 2
(2) Z Z e (5.20)

If the line is loaded at z = [ to the load with the impedance 7}, as is shown in Fig. 5.6,

€ 2

z 1-z

Figure 5.6: TL connected to a load with the complex impedance Zy..

the boundary conditions are
Vi =V(z=1), I, =1(z=1). (5.21)
It can be inferred from Eqgs. (5.19), (5.20) and (5.21) that
Vo(+) = 3(VL + Zolp)e, (5.22)

and
Vi = 1V — ZoIp)e (5.23)

Let us now determine the input impedance at a general position z along the TL. We
define the input impedance as

V()(‘*‘)ef'yz + ‘/0(_)6%2

Zin(z) = =7 . 5.24
( ) I(Z) 0 VO(J'_)@*'YZ _ ‘/E)(_)e"lz ( )
Using Eqgs. (5.22) and (5.23) in Eq. (5.24), we arrive at
Vi + ZaIr)e (—2) Vi — Zol e~ Y(=2)
Zin(2) = Z (VL + ZoIp)e + (L olr)e (5.25)

0 (VL + ZoIL)e'Y(l_z) — (VL — ZoIL)e_'Y(l_Z) '
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Using the hyperbolic functions,

(e¥ — e ®), (5.26)

_1(,z —x : _ 1
coshz = 5(e” +e77), sinhz = 3

and

tanhz = = 5.27
ane coshx e* 4+e7’ (5.27)

we obtain the expression for the input impedance at the position z on the line as

Z1, + Zytanh (I — Z)} (5.28)

Zy + Zr, tanh (I — 2)

Z (z):ZO[

Here Z;, = V, /Iy, is the load impedance. For a lossless line, v = j/3 and tanh[j3(I —
z)] = jtan[B(l — z)], implying that

Zy, + jZotan B(l — Z)} , (5.29)

Zin(2) = Zo {Zo +jZptan B(l — 2)

Let us consider three particularly important limiting cases of lossless lines:
e Short-circuited line, Z;, = 0,— Z,.(0) = jZ, tan 5l;

e Open-circuited line, Z;, = 00, => Z,.(0) = ]tfir‘l’m = —jZycot [,

e Matched line, Z;, = Zy, = Z,,(2) = Zp.

Example 5. 3. Show that a lossy transmission line of length [ has an input impedance
at the generator Z,. = Z, tanh ~! when shorted and Z,. = Z; coth I when open.
Solution. At the generator, z = 0 and Z;y, [ Zo = (Z1+ Zy tanh 1) /(Zo+ Z, tanh 1).
It follows that as Z1, = 0, Zs. = Zptanh~vl and as Zj, = 00, Zy. = Zy/ tanhyl =
Zy coth~l.

Next, we introduce the reflection coefficient as a ratio of the reflected voltage to the
incident voltage at the position z on the line,

V(e
T(z) = % (5.30)
Ve

It can be inferred using Egs. (5.22), (5.23) and (5.30) that

2L =20 (s
[(z) = 2220200 | 5.31
(2) 7, 7 Z:¢ (5.31)

Finally, we will determine the average power transmitted by the line from the source
to a receiver by a lossless transmission line. The average power at a distance [ away
from the generator is

(P) = LRe[V()I*(1)]. (5.32)
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Using Egs. (5.19) and (5.20), and assuming a lossless line, v = j3, we obtain

. . (+)=* . .
(P) = LIRe {VO(*) (38 4 T(1)e~771] % [e=8L — I‘*(Z)eml]}
(+) . .
— LRe {'VZZ [1— ()2 + T(1)e~28 — T*(1)e2] } . (5.33)

Since the last two terms are purely imaginary, we arrive at our result for the transmitted
power

|V(+)‘2 )
(P)= 57— [1-IrOF]| (534)

5.2 Optical fibers

Optical fibers (OF) serve as the most favorable platform for modern communications
systems.Their main advantages over the competition are as follows

Jacket

Cladding

Core

Radial Distance

Figure 5.7: Schematic sketch of an optical fiber.
1. The OFs have a very large bandwidth, typically of a few THz at optical frequen-
cies of about 100 THz;
2. The OFs have extremely low losses of a few tenths of dBs per kilometer;
3. The OFs are immune to many common noise sources that plague conventional

communication systems;
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4. The OFs are quite secure;
5. The OF manufacturing is a standard low-cost technology.

A typical OF is made of-typically silica glass—core surrounded by a cladding of a
material with a slightly lower index of refraction. The whole system is then wrapped
into a jacket as is shown in Fig. 5.7. Recall from Chap. 3 that for nonmagnetic media
with the constitutive parameters, € and p = o, the refractive index is defined as

n = \e/e. (535)

Recall further that any plane wave striking the interface between the fiber and cladding
at the angle greater than the total internal reflection angle,

0. = sin"*(na/n1), (5.36)

is totally reflected and thereby is trapped by the fiber core. Hence light is transmitted
along the fiber because of total internal reflection from the core-cladding interface, see
Fig. 5.8.

VPSP
NN

n

ANA

\\\\\ ANSNNNENNSEN
Y

Figure 5.8: Illustrating the numerical aperture concept.

The fiber transmission efficiency is determined by the numerical aperture defined
as
NA = sinf,. 5.37)

It can be inferred applying Snell’s law (3.164) to the geometry in Fig. 5.8 that

Moo SN0, = ny sin(7/2 — 6.) = ny cos b, ~ \/n? — n3. (5.38)

It then follows that in the air, where the light source is, no, = 1, and Eq. (5.38) implies

NA =sinf, = \/n2 —n| (5.39)
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There two other dimensionless parameters that characterize optical fiber modes: the
relative refractive index mismatch defined as

ny —ng
A:

<1, (5.40)

ni

which is typically rather small, A < 1, and the V-parameter,

V= 5y n? —n3. (5.41)

The latter specifies the number of modes IV trapped by the fiber:

N~ 1y (5.42)

To characterize the power transmission by the fiber, we need to know a linear loss
(attenuation) factor which can be determined by examining fiber losses on propagation.
The power passing through the fiber at a distance L away from the source is related to
the power at the source by the expression

P(L) = P(0)e L. (5.43)

It is convenient to measure the attenuation constant o in dB/km, such that Eq. (5.43)
can be rewritten as

P(L) = P(0)10~**/10, (5.44)
where the attenuation constant in dB/km is
P(0)

In fiber optical communications one wants to avoid absorption losses at all costs.
As a result, the input wave packets should have carrier frequencies far from any in-
ternal resonances of fiber core material. Under these conditions, the refractive index
dependence on the frequency is fairly weak and it can be inferred from Eq. (2.21) to be

2 _ - Bs“f
nw) =1+ = (5.46)
s=1_°5

— o2

Eq. (5.46) is known as the Sellmeier equation; {w, } are the resonant frequencies { B, }
are phenomenological fitting parameters of the fiber core material.

One can then introduce the propagation constant 3 of a plane wave with the fre-
quency w by the expression

Blw) = —n(w) | (5.47)

w
Cc

As n(w) does not vary substantially with w far from resonances, neither does 5. The
latter then can be expanded in a Taylor series around the carrier frequency wy as

B(w) = Bo+ Br(w — wo) + 582(w — wo)® + ... (5.48)
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where

dmp
m = —— , =0,1,2,...). 5.49
ﬁ < dw™ ) w=wo (m ) ( )
In particular, the first term in the expansion describes the group velocity,
1 1 d
=== (n+wn> . (5.50)
vy ¢ dw

Sometimes a group refractive index n is also introduced such that

v = o (5.51)

where the group refractive index is given by

(5.52)

TLg n w dw
The second term in Eq. (5.48) is the group velocity dispersion parameter describing
the wave packet distortion; it can be shown that

2
B2 = % <2 dn +wdn> . (5.53)

dw dw?

Example 5. 4. Derive Eq. (5.53).
Solution. It follows from Eq. (5.49) that 85 = df/dw. Taking a derivative of
Eq. (5.50) and using the rule, (fg) = f'g + ¢ f we arrive at Eq. (5.53).

In practice, often a different dispersion parameter D is used which is defined as

dp
= —. 5.54
Y (5.54)
We can show that the two dispersion parameters are related viz.,
D)?
B2 = — 5o (5.55)
e

Example 5. 5. Derive Eq. (5.55).
Solution. It follows from Eq. (5.54) and the definition of the wavelength \ = 2mwc/w
using the chain rule that

_ o
© dw dX\’
It follows from Eq. (5.49) that the first term on the rhs is just 32, implying that
2’/TC[32 D)\2
D=—>F- = fo=——7.
A2 fz 27c

The two dispersion parameters depend on the wavelength. Their wavelength depen-
dence is exhibited in Fig. 5.9 for typical silica glass fibers.
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Figure 5.9: Variation of (33, D, and d;5 with the wavelength for fused silica. Both (3,
and D vanish at the zero dispersion wavelength corresponding to about 1.27 ym. From
“Nonlinear Fiber Optics” by G. P. Agrawal.

Finally, an important phenomenon involving two closely spaced wave packets, cen-
tered at different carrier wavelengths, takes place on their propagation inside a fiber.
This phenomenon is called the spatial walk-off. The spatial walk-off occurs because
the two wave packets have different group velocities and the faster overtakes the slower
one completely walking through it. As a result, the temporal profiles of the pulses cease
to overlap, thereby drastically reducing their interactions. The spatial walk-off is char-
acterized by the walk-off parameter

diz = B1(M1) — Bi(X2) = v, (A1) — v, H(Aa). (5.56)

The corresponding walk-off length for pulses of typical duration Tj is
Ly =Ty/|d12|. (5.57)
As an example, examine a pulse at \; = 1.3um co-propagating with the pulse at

A2 = 0.8um. It follows from Fig. 5.9 that d12 = 20ps/m, implying the walk-off length
of just 50 cm for Ty = 10 ps.
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