Practice Midterm Examination, ECED 4301

Problem 1

Given the magnetic field in free space,

 $\mathbf{H} = \mathbf{a}_z H_0 \sin \alpha x \cos(\omega t - \beta y),$

determine the displacement current density and the corresponding electric field in terms of H_0 , ω , and β .

Problem 2

In a lossless nonmagnetic medium with $\epsilon_r = 9$, a magnetic field $\mathbf{H}(y,t) = 10\mathbf{a}_x \cos(\omega t + \beta y) + 10\mathbf{a}_z \sin(\omega t + \beta y)$, mA/m propagates as a plane wave with the frequency of 10MHz.

- 1. What are the propagation constant, wavelength, and phase velocity of the wave?
- 2. Determine $\mathbf{E}(y, t)$.
- 3. What is the polarization of the wave? (you have to justify your answer to get full credit).

Problem 3

Given the volume charge density

$$\rho_v(\mathbf{r},t) = (x^2 + y^2 + z^2)\cos 10^4 t, \ \mu C/m^3$$

in a region of space, find the total current flowing through the surface of a cube of size 1 centered at the origin.

Problem 4

A plane wave propagates in a good conductor with conductivity $\sigma = 10$ MS/m. The electric field of the wave is given by

$$\mathbf{E} = 3e^{-10^3x}\cos(10^3x - 10^5t)\mathbf{a}_y, \ mV/m.$$

- 1. What are the skin depth and complex impedance of the medium?
- 2. Find the time-averaged power flow through the surface $x = 0, -1 mm \le y \le 1 mm, -1 mm \le z \le 1 mm.$