Solutions to Quiz 1, ECED 3300

Problem 1

By definition,

$$
\mathbf{B}=\nabla \times \mathbf{A}=\left|\begin{array}{ccc}
\mathbf{a}_{x} & \mathbf{a}_{y} & \mathbf{a}_{z} \\
\partial_{x} & \partial_{y} & \partial_{z} \\
\frac{y}{1+z^{2}} & \frac{-x}{1+z^{2}} & 0
\end{array}\right|=-\frac{2 x z}{\left(z^{2}+1\right)^{2}} \mathbf{a}_{x}-\frac{2 y z}{\left(z^{2}+1\right)^{2}} \mathbf{a}_{y}-\frac{2}{z^{2}+1} \mathbf{a}_{z}
$$

Problem 2

We employ the Bio-Savart law,

$$
d \mathbf{H}=\frac{I d \mathbf{l} \times \mathbf{R}}{4 \pi R^{3}}
$$

In our case, $I d \mathbf{l}=I b d \phi \mathbf{a}_{\phi}$, and $\mathbf{R}=-b \mathbf{a}_{\rho}$; the minus sign comes from the fact that \mathbf{R} is a distance from a current element to the observation point. Putting it all together,

$$
d \mathbf{H}=-\frac{I b d \phi \mathbf{a}_{\phi} \times \mathbf{a}_{\rho} b}{4 \pi b^{3}}
$$

Observing that $\mathbf{a}_{\phi} \times \mathbf{a}_{\rho}=-\mathbf{a}_{z}$, we obtain,

$$
\mathbf{H}=\frac{I}{4 \pi b} \mathbf{a}_{z} \int_{0}^{2 \pi} d \phi=\left(\frac{I}{2 b}\right) \mathbf{a}_{z} .
$$

Problem 3

a) The continuity equation (charge conservation in the differential form) states,

$$
\partial_{t} \rho_{v}=-\nabla \cdot \mathbf{J},
$$

Thus, taking the divergence of \mathbf{J}, which has only a θ component, yields

$$
\partial_{t} \rho_{v}=-\frac{J_{0} r}{R} e^{-r / R}\left(\frac{1}{r \sin \theta}\right) \partial_{\theta}(\sin \theta)=-\frac{J_{0} \cot \theta}{R} e^{-r / R} .
$$

b) By definition,

$$
I=\oint d \mathbf{S} \cdot \mathbf{J}
$$

where $d \mathbf{S}=\mathbf{a}_{n} d S$. In our case, $\mathbf{a}_{n}=\mathbf{a}_{r}$ and hence $d \mathbf{S} \cdot \mathbf{J}=0$, because $\mathbf{a}_{r} \cdot \mathbf{a}_{\theta}=0$. Thus, the overall current through the surface of the sphere is equal to zero.

