Quiz 1, ECED 3300

Instructor: Sergey A. Ponomarenko.
Place, Date and Time: B308; Tuesday, October 1 2019, 11:35 am to $12: 25 \mathrm{pm}$.
Closed Books: Formula sheets are provided; no calculators are allowed.
Hint: Make sure to justify all your answers to get full credit.

Problem 1 (8 pts)

Consider the vector field,

$$
\mathbf{A}=\mathbf{a}_{x}\left(x+c_{1} z\right)+\mathbf{a}_{y}\left(z+c_{2} y\right)+\mathbf{a}_{z}\left(y+c_{3} x\right) .
$$

Under what conditions on the parameters c_{1}, c_{2} and c_{3} does \mathbf{A} have a zero curl at every point in space?

Problem 2 (10 pts)

Verify Gauss's theorem for the vector field $\mathbf{F}=\mathbf{a}_{r}$ and a sphere of unit radius, centered at the origin.

Problem 3 (12 pts)

Given the field $f=\left(\mathbf{a}_{z} \times \mathbf{r}\right) \cdot\left(\mathbf{a}_{z} \times \mathbf{r}\right)$, where \mathbf{r} is a position vector,
a) determine the gradient of f; (10 pts)
b) express your answer to part (a) in the cylindrical coordinates. (2pts)

