ECED 4310
 Tutorial: Maxwell's Equations
 Problem 1

Given the charge density $\rho_{v}(x)=x e^{-x^{2}} \mathrm{C} / \mathrm{m}^{3}$, find the electric flux through the surface of the cubical box defined by the planes $x=0, x=1, y=0, y=1, z=0$, and $z=1$.

Solution

Using the electric Gauss's law in the integral form, we obtain

$$
\oint d \mathbf{S} \cdot \mathbf{D}=\int_{v} d v \rho_{v}=\int_{0}^{1} d y \int_{0}^{1} d z \int_{0}^{1} d x x e^{-x^{2}}=\frac{1}{2} \int_{0}^{1} d\left(x^{2}\right) e^{-x^{2}}=\left.\frac{1}{2} e^{-x^{2}}\right|_{0} ^{1}=\frac{\frac{1}{2}\left(1-e^{-1}\right)}{\underline{0}}
$$

Problem 2

Given the electric field $\mathbf{E}=E_{0} \sin \alpha x \cos (\omega t-\beta y) \mathbf{a}_{z} \mathrm{~V} / \mathrm{m}$ in free space, determine \mathbf{H}.

Solution

The easiest way to proceed would be to use Faraday's law in the differential form. In free space,

$$
\begin{equation*}
\nabla \times \mathbf{E}=-\mu_{0} \frac{\partial \mathbf{H}}{\partial t} \tag{1}
\end{equation*}
$$

Taking the curl on the 1.h.s., we obtain

$$
\begin{equation*}
\nabla \times \mathbf{E}=E_{0}\left[\mathbf{a}_{x} \beta \sin \alpha x \sin (\omega t-\beta y)-\mathbf{a}_{y} \alpha \cos \alpha x \cos (\omega t-\beta y)\right] \tag{2}
\end{equation*}
$$

It follows from Eqs. (1) and (2) that the magnetic field can be sought in the form

$$
\begin{equation*}
\mathbf{H}=\mathbf{a}_{x} H_{x} \sin \alpha x \cos (\omega t-\beta y)+\mathbf{a}_{y} H_{y} \cos \alpha x \sin (\omega t-\beta y), \tag{3}
\end{equation*}
$$

where H_{x} and H_{y} are yet unknown constants. Using the Ansatz (3) on the r.h.s of Eq. (1), the latter reads

$$
\begin{equation*}
-\mu_{0} \frac{\partial \mathbf{H}}{\partial t}=\mu_{0} \omega\left[\mathbf{a}_{x} H_{x} \sin \alpha x \sin (\omega t-\beta y)-\mathbf{a}_{y} H_{y} \cos \alpha x \cos (\omega t-\beta y)\right] . \tag{4}
\end{equation*}
$$

Equating Eqs. (2) and (4) component by component, we obtain

$$
\begin{equation*}
\mu_{0} \omega H_{x}=E_{0} \beta, \Longrightarrow, H_{x}=\frac{\beta E_{0}}{\mu_{0} \omega} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\mu_{0} \omega H_{y}=E_{0} \alpha, \Longrightarrow, H_{y}=\frac{\alpha E_{0}}{\mu_{0} \omega} . \tag{6}
\end{equation*}
$$

Thus,

$$
\mathbf{H}=\mathbf{a}_{x} \frac{\beta E_{0}}{\mu_{0} \omega} \sin \alpha x \cos (\omega t-\beta y)+\mathbf{a}_{y} \frac{\alpha E_{0}}{\mu_{0} \omega} \cos \alpha x \sin (\omega t-\beta y) .
$$

Problem 3

Given a charge distribution

$$
\rho_{v}(x)=\left\{\begin{array}{cc}
\rho_{0} x / a, & |x| \leq a, \\
0, & |x|>a,
\end{array}\right.
$$

where ρ_{0} is a known constant in free space, determine the electric field everywhere.

Solution

The electric Gauss's law in differential form reads,

$$
\begin{equation*}
\nabla \cdot \mathbf{D}=\rho_{v} . \tag{7}
\end{equation*}
$$

By symmetry, the electric flux density depends only on x and we assume that

$$
\begin{equation*}
\mathbf{D}(x)=D_{x} \mathbf{a}_{x} . \tag{8}
\end{equation*}
$$

Under these conditions, the electric flux density inside the strip, $|x| \leq a$ satisfies the equation

$$
\begin{equation*}
\frac{d D_{x}}{d x}=\rho_{0} \frac{x}{a} . \tag{9}
\end{equation*}
$$

Integrating Eq. (9), we arrive at

$$
\begin{equation*}
D_{x}(x)=\frac{\rho_{0} x^{2}}{2 a}+C, \tag{10}
\end{equation*}
$$

where C is a constant of integration. Outside the strip, $|x|>a$, there is no charge, and $\mathbf{D}=0$. Since the boundaries $x= \pm a$ separate regions within the same medium, the electric flux density must be continuous across $x= \pm a$. It then follows that

$$
\begin{equation*}
D_{x}(x= \pm a)=C+\frac{\rho_{0} a}{2}=0, \Longrightarrow C=-\frac{\rho_{0} a}{2} . \tag{11}
\end{equation*}
$$

Thus,

$$
\mathbf{D}=\left\{\begin{array}{cc}
\frac{\rho_{0}\left(x^{2}-a^{2}\right)}{2 a} \mathbf{a}_{x}, & |x| \leq a \\
0, & |x| \geq a
\end{array}\right.
$$

Problem 4

In free space, given the current distribution density

$$
\mathbf{J}=\left\{\begin{array}{cc}
J_{0}(1-|z| / a) \mathbf{a}_{x}, & |z| \leq a, \\
0, & |z|>a,
\end{array}\right.
$$

where J_{0} is a known constant, find the magnetic field everywhere.

Solution

As $\nabla \cdot \mathbf{J}=0$, it follows from the continuity equation that $\partial_{t} \rho_{v}=0$, implying that the charge density is time-independent. It can then be inferred from the electric Gauss's law (7) that \mathbf{D} is time-independent as well. The Ampère's law then states that

$$
\begin{equation*}
\nabla \times \mathbf{H}=\mathbf{J} \tag{12}
\end{equation*}
$$

First, of all, outside the strip, $|z| \geq a$, there is no current, and hence no magnetic field, $\mathbf{H}=0$. Inside the strip, we assume by symmetry that (i) \mathbf{H} may only depend on z and (ii) it should have no x-component. We suppose that

$$
\begin{equation*}
\mathbf{H}=H(z) \mathbf{a}_{y}, \tag{13}
\end{equation*}
$$

which manifestly satisfies $\nabla \cdot \mathbf{H}=0$. Taking the curl on the 1.h.s of Eq. (12), we obtain $\nabla \times \mathbf{H}=$ $-\partial_{z} H \mathbf{a}_{x}$, implying that

$$
\begin{equation*}
-\frac{d H}{d z}=J_{0}(1-|z| / a) . \tag{14}
\end{equation*}
$$

Integrating Eq. (14), we obtain

$$
H(z)=\left\{\begin{array}{l}
-J_{0}\left(z-z^{2} / 2 a\right)+C_{1}, \quad 0<z \leq a \tag{15}\\
-J_{0}\left(z+z^{2} / 2 a\right)+C_{2}, \quad-a \leq z<0
\end{array}\right.
$$

where $C_{1,2}$ are unknown constants. The continuity of the magnetic field across the boundary $z=a$ implies that

$$
-J_{0}(a-a / 2)+C_{1}=0, \Longrightarrow C_{1}=J_{0} a / 2
$$

By the same token, the continuity of \mathbf{H} across $z=-a$ leads to

$$
-J_{0}(-a+a / 2)+C_{2}=0, \Longrightarrow C_{2}=-J_{0} a / 2
$$

Consequently,

$$
\mathbf{H}=\left\{\begin{array}{cc}
-J_{0}\left(z-\frac{z^{2}+a^{2}}{2 a}\right) \mathbf{a}_{y}, & 0<z \leq a \\
-J_{0}\left(z+\frac{z^{2}+a^{2}}{2 a}\right) \mathbf{a}_{y}, & -a \leq z<0, \\
0 & |z| \geq a .
\end{array}\right.
$$

or in a more compact form

$$
\mathbf{H}=\left\{\begin{array}{cc}
-J_{0}\left[z-\frac{|z|\left(z^{2}+a^{2}\right)}{2 a z}\right] \mathbf{a}_{y}, & |z| \leq a \\
0 & |z| \geq a
\end{array}\right.
$$

Problem 5

A rod of length l rotates about the z-axis with the angular velocity ω. If $\mathbf{B}=B_{0} \mathbf{a}_{z}$, determine the voltage induced in the rod.

Solution

Assume the rod was located along the x-axis at $t=0$. It follows that at the time t, it makes the angle $\phi=\omega t$ with the x-axis. We apply Faraday's law in the integral form to the sector formed with the x-axis and the position of the rod at the time t.

$$
\mathcal{E}_{\mathrm{emf}}=-\frac{d}{d t} \int d \mathbf{S} \cdot \mathbf{B}=-\frac{d}{d t} B_{0}\left(\mathbf{a}_{z} \cdot \mathbf{a}_{z} \frac{1}{2} l^{2} \phi\right)=-\frac{1}{2} B_{0} l^{2} \frac{d}{d t} \omega t=-\frac{1}{2} B_{0} l^{2} \omega .
$$

Thus,

$$
V=\mathcal{E}_{\mathrm{emf}}=\frac{1}{2} B_{0} \omega l^{2} .
$$

