
ECED 4310
Tutorial: Maxwell’s Equations

Problem 1

Given the charge density ρv(x) = xe−x2 C/m3, find the electric flux through the surface of the

cubical box defined by the planes x = 0, x = 1, y = 0, y = 1, z = 0, and z = 1.

Solution

Using the electric Gauss’s law in the integral form, we obtain∮
dS ·D =

∫
v
dvρv =

∫ 1

0
dy

∫ 1

0
dz

∫ 1

0
dxxe−x2

= 1
2

∫ 1
0 d(x2)e−x2

= 1
2

e−x2
∣∣∣1
0

= 1
2
(1− e−1).

Problem 2

Given the electric field E = E0 sin αx cos(ωt− βy)az V/m in free space, determine H.

Solution

The easiest way to proceed would be to use Faraday’s law in the differential form. In free space,

∇× E = −µ0
∂H

∂t
. (1)

Taking the curl on the l.h.s., we obtain

∇× E = E0[axβ sin αx sin(ωt− βy)− ayα cos αx cos(ωt− βy)]. (2)

It follows from Eqs. (1) and (2) that the magnetic field can be sought in the form

H = axHx sin αx cos(ωt− βy) + ayHy cos αx sin(ωt− βy), (3)

where Hx and Hy are yet unknown constants. Using the Ansatz (3) on the r.h.s of Eq. (1), the

latter reads

−µ0
∂H

∂t
= µ0ω[axHx sin αx sin(ωt− βy)− ayHy cos αx cos(ωt− βy)]. (4)

Equating Eqs. (2) and (4) component by component, we obtain

µ0ωHx = E0β, =⇒, Hx =
βE0

µ0ω
, (5)
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and

µ0ωHy = E0α, =⇒, Hy =
αE0

µ0ω
. (6)

Thus,

H = ax
βE0

µ0ω
sin αx cos(ωt− βy) + ay

αE0

µ0ω
cos αx sin(ωt− βy).

Problem 3

Given a charge distribution

ρv(x) =

 ρ0x/a, |x| ≤ a,

0, |x| > a,

where ρ0 is a known constant in free space, determine the electric field everywhere.

Solution

The electric Gauss’s law in differential form reads,

∇ ·D = ρv. (7)

By symmetry, the electric flux density depends only on x and we assume that

D(x) = Dxax. (8)

Under these conditions, the electric flux density inside the strip, |x| ≤ a satisfies the equation

dDx

dx
= ρ0

x

a
. (9)

Integrating Eq. (9), we arrive at

Dx(x) =
ρ0x

2

2a
+ C, (10)

where C is a constant of integration. Outside the strip, |x| > a, there is no charge, and D = 0.

Since the boundaries x = ±a separate regions within the same medium, the electric flux density

must be continuous across x = ±a. It then follows that

Dx(x = ±a) = C +
ρ0a

2
= 0, =⇒ C = −ρ0a

2
. (11)

Thus,

D =


ρ0(x2−a2)

2a
ax, |x| ≤ a,

0, |x| ≥ a.
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Problem 4

In free space, given the current distribution density

J =

 J0(1− |z|/a)ax, |z| ≤ a,

0, |z| > a,

where J0 is a known constant, find the magnetic field everywhere.

Solution

As ∇ · J = 0, it follows from the continuity equation that ∂tρv = 0, implying that the charge

density is time-independent. It can then be inferred from the electric Gauss’s law (7) that D is

time-independent as well. The Ampère’s law then states that

∇×H = J. (12)

First, of all, outside the strip, |z| ≥ a, there is no current, and hence no magnetic field, H = 0.

Inside the strip, we assume by symmetry that (i) H may only depend on z and (ii) it should have

no x-component. We suppose that

H = H(z)ay, (13)

which manifestly satisfies ∇ ·H = 0. Taking the curl on the l.h.s of Eq. (12), we obtain ∇×H =

−∂zHax, implying that

−dH

dz
= J0(1− |z|/a). (14)

Integrating Eq. (14), we obtain

H(z) =

 −J0(z − z2/2a) + C1, 0 < z ≤ a,

−J0(z + z2/2a) + C2, −a ≤ z < 0,
(15)

where C1,2 are unknown constants. The continuity of the magnetic field across the boundary z = a

implies that

−J0(a− a/2) + C1 = 0, =⇒ C1 = J0a/2.

By the same token, the continuity of H across z = −a leads to

−J0(−a + a/2) + C2 = 0, =⇒ C2 = −J0a/2.
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Consequently,

H =


−J0

(
z − z2+a2

2a

)
ay, 0 < z ≤ a

−J0

(
z + z2+a2

2a

)
ay, −a ≤ z < 0,

0 |z| ≥ a.

or in a more compact form

H =

 −J0

[
z − |z|(z2+a2)

2az

]
ay, |z| ≤ a,

0 |z| ≥ a.

Problem 5

A rod of length l rotates about the z-axis with the angular velocity ω. If B = B0az, determine the

voltage induced in the rod.

Solution

Assume the rod was located along the x-axis at t = 0. It follows that at the time t, it makes the

angle φ = ωt with the x-axis. We apply Faraday’s law in the integral form to the sector formed

with the x-axis and the position of the rod at the time t.

Eemf = − d

dt

∫
dS ·B = − d

dt
B0

(
az · az

1
2
l2φ

)
= −1

2
B0l

2 d
dt

ωt = −1
2
B0l

2ω.

Thus,

V = Eemf = 1
2
B0ωl2.
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