ECED 4310
 Tutorial: Boundary conditions to Maxwell's Equations

Problem 1

Show that neither electric nor magnetic time-varying field can exist within a perfect conductor, $\sigma \rightarrow \infty$. What are the boundary conditions for a perfect conductor?

Solution

It follows at once from Ohm's law, $\mathbf{J}=\sigma \mathbf{E}$ that for the conduction current in the prefect conductor, $\sigma \rightarrow \infty$, to be finite, $\mathbf{E}=0$ inside the conductor. It then follows from Faraday's law that $\mathbf{B}=0$ as well. Moreover, the electric Gauss's law implies that $\rho_{v}=0$ in the interior of the perfect conductor. The boundary conditions at the surface of a perfect conductor read then

$$
\begin{gather*}
\mathbf{a}_{n} \times \mathbf{E}=0 \tag{1}\\
\mathbf{a}_{n} \cdot \mathbf{D}=\rho_{s} \tag{2}\\
\mathbf{a}_{n} \times \mathbf{H}=\mathbf{J}_{s} \tag{3}\\
\mathbf{a}_{n} \cdot \mathbf{B}=0 \tag{4}
\end{gather*}
$$

Here $\mathbf{E}, \mathbf{D}, \mathbf{H}$, and \mathbf{B} are the fields on the surface of the perfect conductor; ρ_{s} and \mathbf{J}_{s} are the surface charge and current density on the conductor, and \mathbf{a}_{n} is an outward unit normal.

Problem 2

The interface $x=0$ separates two perfect dielectric media 1 and 2 , occupying the half-spaces $x>0$ and $x<0$, respectively. The media properties are: $\epsilon_{1}=12 \epsilon_{0}, \mu_{1}=2 \mu_{0}, \epsilon_{2}=9 \epsilon_{0}$, and $\mu_{2}=\mu_{0}$. Given $\mathbf{E}_{1}=E_{0}\left(3 \mathbf{a}_{x}+2 \mathbf{a}_{y}-6 \mathbf{a}_{z}\right)$ and $\mathbf{H}_{1}=H_{0}\left(2 \mathbf{a}_{x}-3 \mathbf{a}_{y}\right)$, determine \mathbf{E}_{2} and \mathbf{H}_{2}.

Solution

In this problem, the unit normal to the interface is $\mathbf{a}_{n}=-\mathbf{a}_{x}$. Thus, $\mathbf{E}_{1 t}=E_{0}\left(2 \mathbf{a}_{y}-6 \mathbf{a}_{z}\right)$ and $\mathbf{E}_{1 n}=3 E_{0} \mathbf{a}_{x}$. It follows by continuity of tangential components of \mathbf{E} that $\mathbf{E}_{2 t}=\mathbf{E}_{1 t}=$ $E_{0}\left(2 \mathbf{a}_{y}-6 \mathbf{a}_{z}\right)$. Next, $\mathbf{D}_{1}=12 E_{0} \epsilon_{0}\left(3 \mathbf{a}_{x}+2 \mathbf{a}_{y}-6 \mathbf{a}_{z}\right)$. Let, $\mathbf{D}_{2}=9 E_{0} \epsilon_{0}\left(\alpha \mathbf{a}_{x}+2 \mathbf{a}_{y}-6 \mathbf{a}_{z}\right)$. It follows from the boundary conditions that

$$
\mathbf{a}_{n} \cdot\left(\mathbf{D}_{2}-\mathbf{D}_{1}\right)=0, \Longrightarrow(36-9 \alpha) E_{0} \epsilon_{0}=0, \Longrightarrow \alpha=4
$$

Thus,

$$
\mathbf{E}_{2}=E_{0}\left(4 \mathbf{a}_{x}+2 \mathbf{a}_{y}-6 \mathbf{a}_{z}\right),
$$

By the same token, the continuity of tangential components of \mathbf{H} in the absence of surface currents, implies that $\mathbf{H}_{2 t}=\mathbf{H}_{1 t}=-3 H_{0} \mathbf{a}_{y}$. Further, $\mathbf{B}_{1}=2 \mu_{0} H_{0}\left(2 \mathbf{a}_{x}-3 \mathbf{a}_{y}\right)$, and $\mathbf{B}_{2}=\mu_{0} H_{0}\left(\beta \mathbf{a}_{x}-\right.$ $3 \mathbf{a}_{y}$). The continuity of normal components of the flux density leads to

$$
\mu_{0} H_{0}(\beta-4)=0, \Longrightarrow \beta=4 .
$$

Thus,

$$
\underline{\mathbf{H}_{2}=H_{0}\left(4 \mathbf{a}_{x}-3 \mathbf{a}_{y}\right), ~}
$$

Problem 3

The electric flux density at a point on the surface of a perfect conductor is given by $\mathbf{D}=D_{0}\left(\mathbf{a}_{x}+\right.$ $\sqrt{3} \mathbf{a}_{y}+2 \sqrt{3} \mathbf{a}_{z}$. Find the magnitude of the surface charge density at the point.

Solution

The boundary conditions on the surface of a perfect conductor state,

$$
\begin{equation*}
\mathbf{a}_{n} \times \mathbf{D}=0 \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbf{a}_{n} \cdot \mathbf{D}=\rho_{s} . \tag{6}
\end{equation*}
$$

The only way to satisfy Eq. (5) is for the unit normal to the conductor at the point to be parallel D, i.e.,

$$
\begin{equation*}
\mathbf{a}_{n}= \pm s\left(\mathbf{a}_{x}+\sqrt{3} \mathbf{a}_{y}+2 \sqrt{3} \mathbf{a}_{z}\right), \tag{7}
\end{equation*}
$$

where s is a normalization constant, obtained from the condition, $\left|\mathbf{a}_{n}\right|=1, s=1 / 4$. Thus,

$$
\begin{equation*}
\mathbf{a}_{n}= \pm \frac{\left(\mathbf{a}_{x}+\sqrt{3} \mathbf{a}_{y}+2 \sqrt{3} \mathbf{a}_{z}\right)}{4} \tag{8}
\end{equation*}
$$

It follows from Eqs. (6) and (8) that

$$
\begin{equation*}
\underline{\left|\rho_{s}\right|=4\left|D_{0}\right| .} \tag{9}
\end{equation*}
$$

Problem 4

At a point on the surface of a perfect conductor, $\mathbf{D}=D_{0}\left(\mathbf{a}_{x}+2 \mathbf{a}_{y}+2 \mathbf{a}_{z}\right)$ and $\mathbf{H}=H_{0}\left(2 \mathbf{a}_{x}-\right.$ $2 \mathbf{a}_{y}+\mathbf{a}_{z}$). It is known that $\rho_{s}>0$. Determine ρ_{S} and \mathbf{J}_{s} at the point.

Solution

It follows from Eq. (5) that in this case,

$$
\begin{equation*}
\mathbf{a}_{n}=\frac{\left(\mathbf{a}_{x}+2 \mathbf{a}_{y}+2 \mathbf{a}_{z}\right)}{3} \tag{10}
\end{equation*}
$$

We chose a " + " sign because ρ_{s} is positive. Indeed, it follows from Eqs. (6) and (refaux5) that

$$
\begin{equation*}
\rho_{s}=\mathbf{a}_{n} \cdot \mathbf{D}=3 D_{0}>0 \tag{11}
\end{equation*}
$$

The other boundary condition implies that

$$
\begin{equation*}
\mathbf{J}_{s}=\mathbf{a}_{n} \times \mathbf{H} \tag{12}
\end{equation*}
$$

or

$$
\mathbf{J}_{s}=\frac{H_{0}}{3}\left|\begin{array}{ccc}
\mathbf{a}_{x} & \mathbf{a}_{y} & \mathbf{a}_{z} \tag{13}\\
1 & 2 & 2 \\
2 & -2 & 1
\end{array}\right| .
$$

Working out the determinant, we obtain

$$
\underline{\mathbf{J}_{s}=H_{0}\left(2 \mathbf{a}_{x}+\mathbf{a}_{y}-2 \mathbf{a}_{z}\right)}
$$

