ECED 4310
 Tutorial: Plane electromagnetic waves
 Problem 1

A plane electromagnetic wave propagating in a nonmagnetic medium is specified by its magnetic field,

$$
\mathbf{H}=25 \sin \left(2 \times 10^{8} t+6 x\right) \mathbf{a}_{y}, m A / m .
$$

Determine:

1. The direction of wave propagation.
2. The permittivity of the medium.
3. The electric field intensity.

Solution

1. The phase can be written as $\theta=\omega t+\beta x$, where $\omega=2 \times 10^{8} \mathrm{~s}^{-1}$ and $\beta=6$. Thus, the wave propagates in a negative x-direction (backward-propagating wave).
2.

$$
\beta=\omega \sqrt{\epsilon \mu_{0}}=\frac{\omega}{c} \sqrt{\epsilon_{r}} .
$$

It follows that

$$
\epsilon_{r}=\frac{\beta^{2} c^{2}}{\omega^{2}}=81, \Longrightarrow \underline{\epsilon=81 \epsilon_{0}} .
$$

3.

$$
\mathbf{H}=\operatorname{Re}\left[\mathbf{H}_{0} e^{j\left(2 \times 10^{8} t+6 x\right)}\right],
$$

where

$$
\begin{equation*}
\mathbf{H}_{0}=-25 j \mathbf{a}_{y}, m A / m \tag{1}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
\mathbf{E}_{0}=-\eta\left(\mathbf{a}_{k} \times \mathbf{H}_{0}\right), \quad \mathbf{a}_{k}=-\mathbf{a}_{x}, \quad \eta=\sqrt{\mu_{0} / \epsilon}=\eta_{0} / 9=40 \pi / 3 \tag{2}
\end{equation*}
$$

It can be inferred from Eqs. (1) and (2) that

$$
\mathbf{E}_{0}=\frac{\eta_{0}}{9}\left(\mathbf{a}_{x} \times \mathbf{H}_{0}\right)=-\frac{25 \eta_{0}}{9} j \mathbf{a}_{z}, m V / m
$$

Thus,

$$
\mathbf{E}=\operatorname{Re}\left[\mathbf{E}_{0} e^{j\left(2 \times 10^{8} t+6 x\right)}\right]=\frac{\frac{1}{3}}{\underline{3}} \mathbf{a}_{z} \sin \left(2 \times 10^{8} t+6 x\right), V / m .
$$

Problem 2

The electric field of a plane wave propagating in a nonpermeable dielectric medium is given by

$$
\mathbf{E}=\mathbf{a}_{x} 2 \cos \left(10^{8} t-z / \sqrt{3}\right)-\mathbf{a}_{y} \sin \left(10^{8} t-z / \sqrt{3}\right), V / m .
$$

1. Determine the frequency and wavelength of the wave.
2. What is the dielectric constant of the medium?
3. Describe the wave polarization.
4. Find the corresponding H .

Solution

1. The phase of the wave is $\theta=\omega t-\beta z$. Thus, $\omega=10^{8} \mathrm{~s}^{-1} ; \lambda=2 \pi / \beta=2 \pi \sqrt{3}$.
2. $\beta=\omega \sqrt{\mu \epsilon}=\frac{\omega}{c} \sqrt{\epsilon_{r}}$. It follows that $\epsilon_{r}=\beta^{2} c^{2} / \omega^{2}=3$.
3. Since $\left|E_{0 x}\right| \neq\left|E_{0 y}\right|$ and $\phi_{0 x} \neq \phi_{0 y}$, the wave is (left-hand) elliptically polarized.
4. The complex amplitude of the electric field is

$$
\mathbf{E}_{0}=2 \mathbf{a}_{x}+j \mathbf{a}_{y},
$$

Also, $\eta=\eta_{0} / \sqrt{\epsilon_{r}}=120 \pi / \sqrt{3}$ and $\mathbf{a}_{k}=\mathbf{a}_{z}$. Thus,

$$
\mathbf{H}_{0}=\frac{\mathbf{a}_{k} \times \mathbf{E}_{0}}{\eta}=\frac{\sqrt{3}}{120 \pi}\left(2 \mathbf{a}_{y}-j \mathbf{a}_{x}\right) .
$$

Hence,

$$
\mathbf{H}=\operatorname{Re}\left[\mathbf{H}_{0} e^{j(\beta z-\omega t)}\right]=\frac{\sqrt{3}}{120 \pi}\left[\mathbf{a}_{y} 2 \cos \left(10^{8} t-z / \sqrt{3}\right)+\mathbf{a}_{x} \sin \left(10^{8} t-z / \sqrt{3}\right)\right], A / m .
$$

Problem 3

The magnetic field at the entrance to a good conductor, filling the half-space $y \geq 0$, is given by the expression

$$
\mathbf{H}(0, t)=h_{0}\left(\mathbf{a}_{x} \cos \omega t-\mathbf{a}_{z} \sin \omega t\right),
$$

where h_{0} is a known real constant. Determine $\mathbf{E}(y, t)$ and $\mathbf{H}(y, t)$ inside the medium.

Solution

Recall that for a good conductor,

$$
\gamma=\frac{1+j}{\delta}, \quad \eta=\frac{1+j}{\sigma \delta}, \quad \theta_{\eta}=\pi / 4
$$

The complex amplitude of the magnetic field at the entrance to the medium is then

$$
\begin{equation*}
\mathbf{H}_{0}=\operatorname{Re}\left[h_{0}\left(\mathbf{a}_{x}+j \mathbf{a}_{y}\right)\right] . \tag{3}
\end{equation*}
$$

Thus, the magnetic field at any $y \geq 0$ is just an inhomogeneous plane wave,

$$
\mathbf{H}(y, t)=\operatorname{Re}\left[h_{0}\left(\mathbf{a}_{x}+j \mathbf{a}_{y}\right) e^{-y / \delta} e^{j(y / \delta-\omega t)}\right] .
$$

It then follows that

$$
\begin{equation*}
\mathbf{E}_{0}=-\eta\left(\mathbf{a}_{k} \times \mathbf{H}_{0}\right), \quad \mathbf{a}_{k}=\mathbf{a}_{y} \tag{4}
\end{equation*}
$$

It then follows from Eqs. (3) and (4) that

$$
\begin{equation*}
\mathbf{E}_{0}=-\frac{(1+j)}{\sigma \delta}\left[\mathbf{a}_{y} \times\left(\mathbf{a}_{x}+j \mathbf{a}_{z}\right)\right]=-\frac{h_{0}}{\sigma \delta}(1+j)\left(-\mathbf{a}_{z}+j \mathbf{a}_{x}\right)=\frac{h_{0} \sqrt{2}}{\sigma \delta} e^{j \pi / 4}\left(\mathbf{a}_{z}-j \mathbf{a}_{x}\right) . \tag{5}
\end{equation*}
$$

It can be inferred from Eqs. (3) and (5) that

$$
\mathbf{E}_{0} \cdot \mathbf{H}_{0}=0,
$$

as expected for a plane wave. Finally,

$$
\underline{\mathbf{H}(y, t)=h_{0} e^{-y / \delta}\left[\mathbf{a}_{x} \cos (y / \delta-\omega t)-\mathbf{a}_{z} \sin (y / \delta-\omega t)\right] .}
$$

and

$$
\mathbf{E}(y, t)=\frac{h_{0} \sqrt{2}}{\sigma \delta} e^{-y / \delta}\left[\mathbf{a}_{z} \cos (y / \delta-\omega t+\pi / 4)+\mathbf{a}_{x} \sin (y / \delta-\omega t+\pi / 4)\right] .
$$

Notice that

$$
\mathbf{E} \cdot \mathbf{H} \neq 0,
$$

i.e., the orthogonality between the electric and magnetic fields is lost thanks to the phase lag of 45° between the fields.

