ECED 4310
 Tutorial: Reflection and Refraction of Electromagnetic Waves

Problem: Normal Reflection by a Good Conductor.

A plane electromagnetic wave in air with $\mathbf{E}_{i}=\mathbf{a}_{x} E_{0} e^{j\left(\beta_{0} z-\omega t\right)}$ is incident normally onto the surface at $z=0$ of a highly conducting medium with the constitutive parameters σ, ϵ, and μ such that $\sigma / \epsilon \omega \gg 1$.

- Find the power reflection coefficient.
- Determine the fraction of the wave power absorbed by the medium.

Solution

- The impedances of the two media are $\eta_{1}=\sqrt{\mu_{0} / \epsilon_{0}}=\eta_{0}$ in air and

$$
\eta_{2}=\eta_{c}=\sqrt{\frac{\mu / \epsilon}{1-\frac{j \sigma}{\epsilon \omega}}} \simeq \sqrt{\frac{j \mu \omega}{\sigma}},
$$

in the conductor. The reflection coefficient is given by the expression,

$$
r=\frac{\eta_{2}-\eta_{1}}{\eta_{2}+\eta_{1}}=\frac{\eta_{c}-\eta_{0}}{\eta_{c}+\eta_{0}}
$$

As $\left|\eta_{c}\right| \ll \eta_{0}$, we can expand it into a Taylor series and keep terms only to the lowest order in $\left|\eta_{c}\right| / \eta_{0}$ to obtain

$$
r \simeq\left[\left(1-\frac{\eta_{c}}{\eta_{0}}\right)\left(1-\frac{\eta_{c}}{\eta_{0}}\right)\right]=1-\frac{2 \eta_{c}}{\eta_{0}}
$$

Next,

$$
\eta_{c}=e^{j \pi / 4} \sqrt{\frac{\mu \omega}{\sigma}}=\frac{1+j}{\sigma \delta},
$$

in terms of the skin depth δ. Hence, to the first order in η_{c} / η_{0}, we obtain,

$$
R=|r|^{2}=\left|1-\frac{2}{\sigma \delta \eta_{0}}-\frac{2 j}{\sigma \delta \eta_{0}}\right|^{2} \simeq 1-\frac{4}{\sigma \delta \eta_{0}}
$$

- The incident wave can be written as

$$
\mathbf{E}_{i}=\mathbf{a}_{x} E_{0} e^{j\left(\beta_{0} z-\omega t\right)}, \quad \mathbf{H}_{i}=\mathbf{a}_{y} \frac{E_{0}}{\eta_{0}} e^{j\left(\beta_{0} z-\omega t\right)}
$$

The reflected wave is specified by

$$
\mathbf{E}_{r}=\mathbf{a}_{x} E_{r} e^{-j\left(\beta_{0} z-\omega t\right)}, \quad \mathbf{H}_{r}=-\mathbf{a}_{y} \frac{E_{r}}{\eta_{0}} e^{-j\left(\beta_{0} z-\omega t\right)}
$$

Also, $E_{r}=r E_{0}$; the Poynting vectors for the incident and reflected waves are

$$
\left\langle\mathcal{P}_{i}\right\rangle=\mathbf{a}_{z} \frac{\left|E_{0}\right|^{2}}{2 \eta_{0}}, \quad\left\langle\mathcal{P}_{r}\right\rangle=-\mathbf{a}_{z} \frac{R\left|E_{0}\right|^{2}}{2 \eta_{0}} .
$$

By the energy conservation, the absorbed power is given by,

$$
\left|\left\langle\mathcal{P}_{a}\right\rangle\right|=\left|\left\langle\mathcal{P}_{i}\right\rangle\right|-\left|\left\langle\mathcal{P}_{r}\right\rangle\right| .
$$

which makes the fraction F,

$$
F=\frac{\left|\left\langle\mathcal{P}_{a}\right\rangle\right|}{\left|\left\langle\mathcal{P}_{i}\right\rangle\right|}=1-R=\frac{4}{\sigma \delta \eta_{0}} .
$$

of the incident power.

Problem: Retro-reflection.

Determine the fraction of the incident power reflected back by the retro-reflecting setup shown in the figure. The isosceles triangular prizm is made of glass with $\epsilon_{r}=4$ and the light is incident from air.

FIG. 1: Illustration to Problem 2.

Solution

In this problem $\eta_{1}=\eta_{0}$ and $\eta_{2}=\eta_{0} / \sqrt{\epsilon_{r}}=\eta_{0} / 2$. The air-glass and glass-air transmission coefficients are

$$
t_{12}=\frac{2 \eta_{2}}{\eta_{1}+\eta_{2}}=\frac{2}{1+\sqrt{\epsilon_{r}}}=2 / 3
$$

and

$$
t_{21}=\frac{2 \eta_{1}}{\eta_{1}+\eta_{2}}=\frac{2 \sqrt{\epsilon_{r}}}{1+\sqrt{\epsilon_{r}}}=4 / 3
$$

As the angle of incidence within the glass is $\pi / 4$, which is greater than the critical angle for total internal reflection, $\theta_{c}=\sin ^{-1}\left(1 / \sqrt{\epsilon_{r}}\right)=\sin ^{-1}(1 / 2)=\pi / 6$, the wave stays within the glass and is reflected back into the air. The transmitted field amplitude in the glass is $E_{t 1}=t_{12} E_{i}$, and the transmitted back field amplitude is $E_{t 2}=t_{21} E_{t 1}=t_{12} t_{21} E_{i}$. The incident and transmitted back powers are $P_{i}=\left|E_{i}\right|^{2} / 2 \eta_{0}$ and $P_{t}=\left|E_{t 2}\right|^{2} / 2 \eta_{0}$, respectively, implying that

$$
F=\frac{P_{t}}{P_{i}}=\frac{\left|E_{t 2}\right|^{2}}{\left|E_{i}\right|^{2}}=\left|t_{12} t_{21}\right|^{2}=\frac{64}{81}
$$

which is about 80%.

