
ECED 3300, Fall 2019
Electromagnetic Fields

Solutions to the Midterm Examination Problems

Problem 1

1. It follows from Poisson’s equation that in free space,

∇2V = −ρv/ε0, =⇒ ρv = −ε0∇2V.

In our case, V = V (ρ, φ), hence in the cylindrical coordinates,

∇2V =
1

ρ
∂ρ(ρ ∂ρV ) +

1

ρ2
∂2φφV,

It follows that

∇2V =
1

ρ
∂ρ(ρ cosφ)−

1

ρ
cosφ = cosφ/ρ− cosφ/ρ = 0.

Hence,

ρv = 0.

in the given region of space.

2.

E = −∇V = −aρ∂ρV −
aφ
ρ
∂φV = −aρ cosφ+ aφ sin ρ

It follows at once that

|E|2 = 1.

The energy is given by the volume integral,

WE =
ε0
2

∫
dv|E|2 = ε0

2

∫ π

0
dφ

∫ 2

0
dρ ρ

∫ 1

0
dz =

ε0
2
×π × ρ2

2

∣∣∣∣∣
2

0

.

Hence,

WE =
ε0
2
× π × 22

2
= πε0.

Problem 2

Assuming spherical symmetry, D = Dar, we apply Gauss’s law to the interior and exterior of the

sphere separately.

a) Interior, r < R:

D 4πr2 = ρ0
4π

3
r3 =⇒ D = ρ0r/3,



implying that

D =
ρ0r

3
ar =⇒ E =

D

ε0εr
=

ρ0r

3ε0εr
ar.

b) Exterior, r > R:

D 4πr2 = ρ0
4π

3
R3 =⇒ D = ρ0R

3/3r2,

implying that

D =
ρ0R

3

3r2
ar =⇒ E =

D

ε0
=
ρ0R

3

3ε0r2
ar.

By definition,

V = −
∫ R

∞
dl · E−

∫ 0

R
dl · E.

Since E = Ear, dl · E = drE. It then follows that

V = −
∫ R

∞
dr

ρ0R
3

3ε0r2
−
∫ 0

R
dr

ρ0r

3ε0εr
.

Simplifying,

V = − ρ0
3ε0

[
−
∫ R

∞
dr
R3

r2
− 1

εr

∫ 0

R
dr r

]
=

ρ0
3ε0

R3

r

∣∣∣∣∣
R

∞
− r2

2εr

∣∣∣∣∣
0

R


Using the Newton-Leibniz formula, we arrive at

V =
ρ0
3ε0

(
R2 +

R2

2εr

)
=
ρ0R

2

6ε0εr
(1 + 2εr).

Problem 3

1) Working in the Cartesian coordinates, we obtain in the upper half-space,

E = −∇V = −az∂zV = az(V0/a)e
−z/a.

Since the lower half-space is filled with a perfect conductor, E = 0. Combining,

E =

 az(V0/a)e
−z/a z > 0

0 z < 0

2) Using the boundary conditions at a conductor-dielectric interface.

(D1 −D2)|z=0 · an21 = ρs

Medium “1” is the upper half-space, z > 0 and medium “2” is the lower half-space, z < 0. Hence,

an21 = az. It follows that

D1|z=0 · an21 = Dz = εEz|z=0 = εV0/a.



Also,

D2 = 0,

as the flux density inside the conductor. We can then infer that

ρs = εV0/a.

Problem 4

Starting with the superposition principle for the potential,

V =
∫ dl ρl

4πε0|r− r′|
, (1)

we adopt the cylindrical coordinates with the origin at the ring center. In this case, the observation

point is at the origin. Hence, r = 0. Further, r′ = baρ, implying that |r − r′| = b. As well, we

choose an infinitesimally small arc on the ring subtending the angle dφ as viewed from the center.

The corresponding infinitesimal charge reads,

dl ρl = bdφ ρ0 cos
2 φ. (2)

On substituting from Eq. 2 into Eq. 1, and using the fact that |r− r′| = b, we obtain

V =
ρ0
4πε0

∫ 2π

0

dφ b cos2 φ

b
=

ρ0
4πε0

∫ 2π

0
dφ cos2 φ (3)

Looking up the table integral from the formula sheet, we arrive at

V =
ρ0
4πε0

(
φ

2
+

cos 2φ

4

)∣∣∣∣∣
2π

0

=
ρ0
4ε0

. (4)


