ECED 3300, Fall 2019
 Electromagnetic Fields Solutions to the Midterm Examination Problems

 Problem 1

 Problem 1}

1. It follows from Poisson's equation that in free space,

$$
\nabla^{2} V=-\rho_{v} / \epsilon_{0}, \Longrightarrow \rho_{v}=-\epsilon_{0} \nabla^{2} V
$$

In our case, $V=V(\rho, \phi)$, hence in the cylindrical coordinates,

$$
\nabla^{2} V=\frac{1}{\rho} \partial_{\rho}\left(\rho \partial_{\rho} V\right)+\frac{1}{\rho^{2}} \partial_{\phi \phi}^{2} V
$$

It follows that

$$
\nabla^{2} V=\frac{1}{\rho} \partial_{\rho}(\rho \cos \phi)-\frac{1}{\rho} \cos \phi=\cos \phi / \rho-\cos \phi / \rho=0 .
$$

Hence,

$$
\rho_{v}=0 .
$$

in the given region of space.
2.

$$
\mathbf{E}=-\nabla V=-\mathbf{a}_{\rho} \partial_{\rho} V-\frac{\mathbf{a}_{\phi}}{\rho} \partial_{\phi} V=-\mathbf{a}_{\rho} \cos \phi+\mathbf{a}_{\phi} \sin \rho
$$

It follows at once that

$$
|\mathbf{E}|^{2}=1
$$

The energy is given by the volume integral,

$$
W_{E}=\frac{\epsilon_{0}}{2} \int d v|\mathbf{E}|^{2}=\frac{\epsilon_{0}}{2} \int_{0}^{\pi} d \phi \int_{0}^{2} d \rho \rho \int_{0}^{1} d z=\frac{\epsilon_{0}}{2} \times \pi \times\left.\frac{\rho^{2}}{2}\right|_{0} ^{2}
$$

Hence,

$$
W_{E}=\frac{\epsilon_{0}}{2} \times \pi \times \frac{2^{2}}{2}=\underline{\pi \epsilon_{0}} .
$$

Problem 2

Assuming spherical symmetry, $\mathbf{D}=D \mathbf{a}_{r}$, we apply Gauss's law to the interior and exterior of the sphere separately.
a) Interior, $r<R$:

$$
D 4 \pi r^{2}=\rho_{0} \frac{4 \pi}{3} r^{3} \Longrightarrow D=\rho_{0} r / 3
$$

implying that

$$
\mathbf{D}=\frac{\rho_{0} r}{3} \mathbf{a}_{r} \Longrightarrow \mathbf{E}=\frac{\mathbf{D}}{\epsilon_{0} \epsilon_{r}}=\frac{\rho_{0} r}{3 \epsilon_{0} \epsilon_{r}} \mathbf{a}_{r}
$$

b) Exterior, $r>R$:

$$
D 4 \pi r^{2}=\rho_{0} \frac{4 \pi}{3} R^{3} \Longrightarrow D=\rho_{0} R^{3} / 3 r^{2}
$$

implying that

$$
\mathbf{D}=\frac{\rho_{0} R^{3}}{3 r^{2}} \mathbf{a}_{r} \Longrightarrow \mathbf{E}=\frac{\mathbf{D}}{\epsilon_{0}}=\frac{\rho_{0} R^{3}}{3 \epsilon_{0} r^{2}} \mathbf{a}_{r}
$$

By definition,

$$
V=-\int_{\infty}^{R} d \mathbf{l} \cdot \mathbf{E}-\int_{R}^{0} d \mathbf{l} \cdot \mathbf{E}
$$

Since $\mathbf{E}=E \mathbf{a}_{r}, d \mathbf{l} \cdot \mathbf{E}=d r E$. It then follows that

$$
V=-\int_{\infty}^{R} d r \frac{\rho_{0} R^{3}}{3 \epsilon_{0} r^{2}}-\int_{R}^{0} d r \frac{\rho_{0} r}{3 \epsilon_{0} \epsilon_{r}} .
$$

Simplifying,

$$
V=-\frac{\rho_{0}}{3 \epsilon_{0}}\left[-\int_{\infty}^{R} d r \frac{R^{3}}{r^{2}}-\frac{1}{\epsilon_{r}} \int_{R}^{0} d r r\right]=\frac{\rho_{0}}{3 \epsilon_{0}}\left[\left.\frac{R^{3}}{r}\right|_{\infty} ^{R}-\left.\frac{r^{2}}{2 \epsilon_{r}}\right|_{R} ^{0}\right]
$$

Using the Newton-Leibniz formula, we arrive at

$$
V=\frac{\rho_{0}}{3 \epsilon_{0}}\left(R^{2}+\frac{R^{2}}{2 \epsilon_{r}}\right)=\frac{\rho_{0} R^{2}}{\underline{6 \epsilon_{0} \epsilon_{r}}\left(1+2 \epsilon_{r}\right) .}
$$

Problem 3

1) Working in the Cartesian coordinates, we obtain in the upper half-space,

$$
\mathbf{E}=-\nabla V=-\mathbf{a}_{z} \partial_{z} V=\mathbf{a}_{z}\left(V_{0} / a\right) e^{-z / a}
$$

Since the lower half-space is filled with a perfect conductor, $\mathbf{E}=0$. Combining,

$$
\mathbf{E}=\left\{\begin{array}{cc}
\mathbf{a}_{z}\left(V_{0} / a\right) e^{-z / a} & z>0 \\
0 & z<0
\end{array}\right.
$$

2) Using the boundary conditions at a conductor-dielectric interface.

$$
\left.\left(\mathbf{D}_{1}-\mathbf{D}_{2}\right)\right|_{z=0} \cdot \mathbf{a}_{n 21}=\rho_{s}
$$

Medium " 1 " is the upper half-space, $z>0$ and medium " 2 " is the lower half-space, $z<0$. Hence, $\mathbf{a}_{n 21}=\mathbf{a}_{z}$. It follows that

$$
\left.\mathbf{D}_{1}\right|_{z=0} \cdot \mathbf{a}_{n 21}=D_{z}=\left.\epsilon E_{z}\right|_{z=0}=\epsilon V_{0} / a
$$

Also,

$$
\mathbf{D}_{2}=0,
$$

as the flux density inside the conductor. We can then infer that

$$
\rho_{s}=\epsilon V_{0} / a .
$$

Problem 4

Starting with the superposition principle for the potential,

$$
\begin{equation*}
V=\int \frac{d l \rho_{l}}{4 \pi \epsilon_{0}\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} \tag{1}
\end{equation*}
$$

we adopt the cylindrical coordinates with the origin at the ring center. In this case, the observation point is at the origin. Hence, $\mathbf{r}=0$. Further, $\mathbf{r}^{\prime}=b \mathbf{a}_{\rho}$, implying that $\left|\mathbf{r}-\mathbf{r}^{\prime}\right|=b$. As well, we choose an infinitesimally small arc on the ring subtending the angle $d \phi$ as viewed from the center. The corresponding infinitesimal charge reads,

$$
\begin{equation*}
d l \rho_{l}=b d \phi \rho_{0} \cos ^{2} \phi \tag{2}
\end{equation*}
$$

On substituting from Eq. 2 into Eq. 1, and using the fact that $\left|\mathbf{r}-\mathbf{r}^{\prime}\right|=b$, we obtain

$$
\begin{equation*}
V=\frac{\rho_{0}}{4 \pi \epsilon_{0}} \int_{0}^{2 \pi} \frac{d \phi b \cos ^{2} \phi}{b}=\frac{\rho_{0}}{4 \pi \epsilon_{0}} \int_{0}^{2 \pi} d \phi \cos ^{2} \phi \tag{3}
\end{equation*}
$$

Looking up the table integral from the formula sheet, we arrive at

$$
\begin{equation*}
V=\left.\frac{\rho_{0}}{4 \pi \epsilon_{0}}\left(\frac{\phi}{2}+\frac{\cos 2 \phi}{4}\right)\right|_{0} ^{2 \pi}=\frac{\rho_{0}}{\underline{4 \epsilon_{0}}} \tag{4}
\end{equation*}
$$

