Midterm Solutions, ECED 3300

Problem 1.

$$
\begin{gathered}
\mathbf{D}(\rho, \phi, z)=\underbrace{e^{-|z|} \sin \phi}_{D_{\rho}} \mathbf{a}_{\rho}+\underbrace{e^{-|z|} \cos \phi}_{D_{\phi}} \mathbf{a}_{\phi}+\underbrace{e^{-\rho^{2}-z^{2}}}_{D_{z}} \mathbf{a}_{z} . \\
\rho_{v}=\nabla \cdot \mathbf{D}=\frac{1}{\rho} \frac{\partial\left(\rho D_{\rho}\right)}{\partial \rho}+\frac{1}{\rho} \frac{\partial D_{\phi}}{\partial \phi}+\frac{\partial D_{z}}{\partial z} .
\end{gathered}
$$

Thus,

$$
\rho_{v}=-2 z e^{-z^{2}-\rho^{2}} .
$$

Problem 2. a) Choosing $-Q$ placed symmetrically with respect to the plane. Justification: the potential distribution in the upper half-space $z>0$,

$$
V(x, y, z)=\frac{Q}{4 \pi \epsilon_{0} \sqrt{x^{2}+y^{2}+(z-h)^{2}}}-\frac{Q}{4 \pi \epsilon_{0} \sqrt{x^{2}+y^{2}+(z+h)^{2}}}
$$

satisfies the boundary condition $\left.V\right|_{z=0}=0$.
(b)

$$
\mathbf{F}=-\frac{Q^{2}}{4 \pi \epsilon_{0}(2 h)^{2}} \mathbf{a}_{z}=-\frac{Q^{2}}{16 \pi \epsilon_{0} h^{2}} \mathbf{a}_{z}
$$

(c)

$$
W_{E}=\frac{1}{2} Q V_{Q}=\frac{1}{2} Q\left(-\frac{Q}{4 \pi \epsilon_{0} 2 h}\right)=-\frac{Q^{2}}{16 \pi \epsilon_{0} h} .
$$

(d) Energy conservation implies that

$$
W=W_{E}^{(f)}-W_{E}^{(i)}
$$

Next, from part (c),

$$
W_{E}^{(i)}=-\frac{Q^{2}}{16 \pi \epsilon_{0} h} .
$$

Further,

$$
W_{E}^{(f)}=\frac{1}{2} q V_{q}+\frac{1}{2} Q V_{Q} .
$$

To satisfy the boundary condition at the interface at all time, we would need four charges: the original charge Q and its image, $-Q$, the probe charge q and its image, $-q$. Therefore,

$$
V_{q}=\frac{Q}{4 \pi \epsilon_{0} \sqrt{a^{2}+a^{2}+(b-h)^{2}}}-\frac{q}{4 \pi \epsilon_{0}(2 b)}-\frac{Q}{4 \pi \epsilon_{0} \sqrt{a^{2}+a^{2}+(b+h)^{2}}},
$$

and

$$
V_{Q}=\frac{q}{4 \pi \epsilon_{0} \sqrt{a^{2}+a^{2}+(h-b)^{2}}}-\frac{Q}{4 \pi \epsilon_{0}(2 h)}-\frac{q}{4 \pi \epsilon_{0} \sqrt{a^{2}+a^{2}+(h+b)^{2}}}
$$

Finally,

$$
W=\frac{q Q}{4 \pi \epsilon_{0} \sqrt{2 a^{2}+(b-h)^{2}}}-\frac{q Q}{4 \pi \epsilon_{0} \sqrt{2 a^{2}+(b+h)^{2}}}-\frac{q^{2}}{16 \pi \epsilon_{0} b}
$$

Problem 3. a)

$$
\nabla^{2} V=-\rho_{v} / \epsilon
$$

The charge distribution symmetry dictates that

$$
\frac{d^{2} V}{d z^{2}}=-\frac{\rho_{0}}{\epsilon} e^{-z / a}
$$

Integrating twice, we obtain,

$$
V(z)=C_{1} z+C_{2}-\frac{\rho_{0} a^{2}}{\epsilon} e^{-z / a}
$$

The "natural" boundary condition, $V \rightarrow 0$ as $z \rightarrow+\infty$ implies that $C_{1}=C_{2}=0$. Thus,

$$
V(z)=-\frac{\rho_{0} a^{2}}{\epsilon} e^{-z / a}
$$

b)

$$
\mathbf{E}=-\nabla V=-\frac{\partial V}{\partial z} \mathbf{a}_{z}=-\mathbf{a}_{z} \frac{\rho_{0} a}{\epsilon} e^{-z / a}
$$

in the upper half-space, $z>0$ and $\mathbf{E}=0$ (conductor) in the lower half-space, $z<0$. Thus,

$$
\mathbf{E}=\left\{\begin{array}{cc}
-\mathbf{a}_{z} \frac{\rho_{0} a}{\epsilon} e^{-z / a}, & z>0 \\
0, & z<0
\end{array}\right.
$$

c) The boundary condition at the interface $z=0$ implies that

$$
\rho_{s}=\left.\left(\mathbf{D}_{1}-\mathbf{D}_{2}\right)\right|_{z=0} \cdot \mathbf{a}_{n_{21}}
$$

Here, $\mathbf{D}_{2}=0, \mathbf{D}_{1}=-\mathbf{a}_{z} \rho_{0} a e^{-z / a}$, and $\mathbf{a}_{n_{21}}=\mathbf{a}_{z}$. Finally,

$$
\rho_{s}=-\rho_{0} a .
$$

Problem 4. We've got a series connection of two spherical capacitors with capacitances,

$$
C_{1}=\frac{4 \pi \epsilon_{1}}{1 / a-1 / c}, \quad C_{2}=\frac{4 \pi \epsilon_{2}}{1 / c-1 / b} .
$$

Hence,

$$
\frac{1}{C}=\frac{1}{C_{1}}+\frac{1}{C_{2}} .
$$

Finally,

$$
C=\frac{4 \pi \epsilon_{1} \epsilon_{2}}{\epsilon_{2}(1 / a-1 / c)+\epsilon_{1}(1 / c-1 / b)} .
$$

