Prob. 6.15

$$
\begin{aligned}
& \frac{1}{\rho} \frac{d^{2} V}{d \phi^{2}}=0 \quad \longrightarrow \frac{d^{2} V}{d \phi^{2}}=0 \quad \longrightarrow \frac{d V}{d \phi}=A \\
& V=A \phi+B \\
& 0=0+B \quad \longrightarrow \quad B=0 \\
& 50=A \pi / 2 \longrightarrow A=\frac{100}{\pi} \\
& E=-\nabla V=-\frac{1}{\rho} \frac{d V}{d \phi} a_{\phi}=-\frac{A}{\rho} a_{\phi}=-\frac{100}{\pi \rho} a_{\phi}
\end{aligned}
$$

Prob. 6.16
(a)

$$
\begin{aligned}
\nabla^{2} V & =\frac{1}{\rho} \frac{\partial}{\partial \rho}\left(\rho \frac{\partial V}{\partial \rho}\right)+\frac{1}{\rho^{2}} \frac{\partial^{2} V}{\partial \phi^{2}}+0 \\
& =\frac{1}{\rho} \frac{\partial}{\partial \rho}\left(2 c_{1} \rho^{2}-2 c_{2} \rho^{-2}\right) \sin 2 \phi-\frac{4}{\rho^{2}}\left(c_{1} \rho^{2}+c_{2} \rho^{-2}\right) \sin 2 \phi \\
& =\left(4 c_{1}+4 c_{2} \rho^{-4}-4 c_{1}-4 c_{2} \rho^{-4}\right) \sin 2 \phi=0
\end{aligned}
$$

(b)

At $\mathrm{P}\left(2,45^{\circ}, 1\right), \rho=1, \phi=45^{\circ}$

$$
\begin{aligned}
50= & \left(c_{1}+c_{2}\right) \sin 90^{\circ}=c_{1}+c_{2} \\
-E & =\nabla V=\frac{\partial V}{\partial \rho} \boldsymbol{a}_{\rho}+\frac{1}{\rho} \frac{\partial V}{\partial \phi} \boldsymbol{a}_{\phi}+\mathbf{0} \\
& =\left(2 c_{1} \rho-2 c_{2} \rho^{-3}\right) \sin 2 \phi a_{\rho}+\left(c_{1} \rho+c_{2} \rho^{-3}\right)(2) \cos 2 \phi a_{\phi}
\end{aligned}
$$

At P ,
$-E=\left(2 c_{1}-2 c_{2}\right)(1) a_{\rho}+\mathbf{0}$
$|\mathrm{E}|=100=2 c_{1}-2 c_{2} \longrightarrow 50=c_{1}-c_{2}$
From (1) and (2), $\quad \underline{\underline{c_{1}=50, c_{2}=0}}$

$$
\begin{aligned}
& \underline{F^{\prime \prime}+\cot \theta F^{\prime}+\lambda F=0} \\
& \frac{d}{d r}\left(r^{2} R^{\prime}\right)-\lambda R=0 \\
& \quad \begin{array}{l}
R^{\prime \prime}+\frac{2 R^{\prime}}{r}-\frac{\lambda}{r^{2}} R=0 \\
\hline \hline
\end{array}
\end{aligned}
$$

Prob. 6.29 If the centers at $\phi=0$ and $\phi=\pi / 2$ are maintained at a potential difference If $\mathrm{V}_{\mathrm{o}}$, from Example 6.3,

$$
E_{\phi}=\frac{2 V_{o}}{\pi \rho}, \quad J=\sigma E
$$

Fence,

$$
I=\int J \bullet d S=\frac{2 V_{o} \sigma}{\pi} \int_{\rho=a}^{b} \int_{z=0}^{t} \frac{1}{\rho} d \rho d z=\frac{2 V_{o} \sigma t}{\pi} \ln (b / a)
$$

$$
R=\frac{V_{o}}{I}=\frac{\pi}{2 \sigma t \ln (b / a)}
$$

2.30. If $V(r=a)=0, \quad V(r=b)=V_{o}$, from Example 6.9,

$$
E=\frac{V_{o}}{r^{2}(1 / a-1 / b)}, \quad J=\sigma E
$$

$$
\begin{aligned}
& I=\int J \cdot d S=\frac{V_{o} \sigma}{1 / a-1 / b} \int_{\theta=0}^{\alpha} \int_{\phi=0}^{2 \pi} \frac{1}{r^{2}} r^{2} \sin \theta d \theta d \phi=\frac{2 \pi V_{o} \sigma}{1 / a-1 / b}(-\cos \theta) ।_{0}^{\alpha} \\
& \mathbb{Z}=\frac{V_{o}}{I}=\frac{\frac{1}{a}-\frac{1}{b}}{2 \pi \sigma(1-\cos \alpha)}
\end{aligned}
$$

Prob. 6.31
This is the same as Problem 6.30 except that $\alpha=\pi$. Hence,
$R=\frac{1}{2 \pi \sigma(1-\cos \pi)}\left(\frac{1}{a}-\frac{1}{b}\right)=\underline{\underline{\frac{1}{4 \pi \sigma}\left(\frac{1}{a}-\frac{1}{b}\right)}}$

Prob. 6.32 For a spherical capacitor, from Eq. (6.38),

$$
R=\frac{\frac{1}{a}-\frac{1}{b}}{4 \pi \sigma}
$$

For the hemisphere, $R^{\prime}=2 R$ since the sphere consists of two hemispheres in paralte As
$b \longrightarrow \infty$,

$$
\begin{aligned}
& R^{\prime}=\lim _{b \longrightarrow \infty} \frac{2\left[\frac{1}{a}-\frac{1}{b}\right]}{4 \pi \sigma}=\frac{1}{2 \pi a \sigma} \\
& G=1 / R^{\prime}=2 \pi a \sigma
\end{aligned}
$$

Alternatively, for an isolated sphere, $C=4 \pi \varepsilon a$. But

$$
\begin{aligned}
& R C=\frac{\varepsilon}{\sigma} \quad \longrightarrow \quad R=\frac{1}{4 \pi a \sigma} \\
& R^{\prime}=2 R=\frac{1}{2 \pi a \sigma} \quad \text { or } \quad G=2 \pi a \sigma
\end{aligned}
$$

Prob. 6.33
(a) For the parallel-plate capacitor,

$$
\boldsymbol{E}=-\frac{V_{o}}{d} \boldsymbol{a}_{x}
$$

From Example 6.11,

$$
C=\frac{1}{V_{o}^{2}} \int \varepsilon|E|^{2} d v=\frac{1}{V_{o}^{2}} \int \varepsilon \frac{V_{o}^{2}}{d^{2}} d v=\frac{\varepsilon}{d^{2}} S d=\frac{\varepsilon S}{d}
$$

(b) For the cylindrical capacitor,
$E=-\frac{V_{o}}{\rho \ln b / a} a_{\rho}$

## Prob. 6.51

$C=\frac{2 \pi \varepsilon L}{\ln (b / a)}=\frac{2 \pi \times \frac{10^{-9}}{36 \pi} \times 4.2 \times 400 \times 10^{-3}}{\ln (3.5 / 1)}=\underline{\underline{74.5 \mathrm{pF}}}$
Prob. 6.52

$$
\begin{aligned}
& C=\frac{2 \pi \varepsilon_{o} L}{\ln (b / a)}=\frac{2 \pi \times \frac{10^{-9}}{36 \pi} \times 100 \times 10^{-6}}{\ln (600 / 20)}=1.633 \times 10^{-15} \mathrm{~F} \\
& V=Q / C=\frac{50 \times 10^{-15}}{1.633 \times 10^{-15}}=30.62 \mathrm{~V}
\end{aligned}
$$

Prob. 6.53
$C_{1}=\frac{2 \pi \varepsilon_{1}}{\ln (b / a)}, \quad C_{2}=\frac{2 \pi \varepsilon_{2}}{\ln (c / b)}$
Since the capacitance are in series, the total capacitance per unit length is
$C=\frac{C_{1} C_{2}}{C_{1}+C_{2}}=\frac{2 \pi \varepsilon_{1} \varepsilon_{2}}{\underline{\underline{\varepsilon_{2} \ln (b / a)+\varepsilon_{1} \ln (c / b)}}}$
Prob. 6.54

$$
E=\frac{Q}{4 \pi \varepsilon r^{2}} a_{r}
$$



$$
\begin{aligned}
W & =\frac{1}{2} \int \varepsilon|\boldsymbol{E}|^{2} d v=\iiint_{32 \pi^{2} \varepsilon^{2} r^{4}} \varepsilon r^{2} \sin \theta d \theta d \phi d r \\
& =\frac{Q^{2}}{32 \pi^{2} \varepsilon}(2 \pi)(2) \int_{c}^{b} \frac{d r}{r^{2}}=\frac{Q^{2}}{8 \pi \varepsilon}\left(\frac{1}{c}-\frac{1}{b}\right)
\end{aligned}
$$

$$
W=\frac{Q^{2}(b-c)}{8 \pi \varepsilon b c}
$$

Prob. 6.55
(a) Method 1: $\quad E=\frac{\rho_{s}}{\varepsilon}\left(-a_{x}\right)$, where $\rho_{s}$ is to be determined.

$$
\begin{aligned}
V_{o} & =-\int E \bullet d l=-\int \frac{-\rho_{s}}{\varepsilon} d x=\rho_{s} \int_{0}^{d} \frac{1}{\varepsilon_{o}} \frac{d}{d+x} d x=\left.\frac{\rho_{s}}{\varepsilon} d \ln (x+d)\right|_{0} ^{d} \\
V_{o} & =\rho_{s} d \ln \frac{2 d}{d} \longrightarrow \rho_{s}=\frac{V_{o} \varepsilon_{o}}{d \ln 2} \\
\boldsymbol{E} & =-\frac{\rho_{s}}{\varepsilon} \boldsymbol{a}_{x}=-\xlongequal{\frac{V_{o}}{(x+d) \ln 2} a_{x}}
\end{aligned}
$$

Method 2: We solve Laplace's equation

$$
\begin{aligned}
& \nabla \bullet(\varepsilon \nabla V)=\frac{d}{d x}\left(\varepsilon \frac{d V}{d x}\right)=0 \quad \longrightarrow \quad \varepsilon \frac{d V}{d x}=A \\
& \frac{d V}{d x}=\frac{A}{\varepsilon}=\frac{A d}{\varepsilon_{o}(x+d)}=\frac{c_{1}}{x+d} \\
& V=c_{1} \ln (x+d)+c_{2}
\end{aligned}
$$

$$
V(x=0)=0 \quad \longrightarrow \quad 0=c_{1} \ln d+c_{2} \quad \longrightarrow \quad c_{2}=-c_{1} \ln d
$$

$$
V(x=d)=V_{o} \quad \longrightarrow \quad V_{o}=c_{1} \ln 2 d-c_{1} \ln d=c_{1} \ln 2
$$

$$
c_{l}=\frac{V_{o}}{\ln 2}
$$

$$
V=c_{l} \ln \frac{x+d}{d}=\underline{\underline{\frac{V_{o}}{\ln 2} \ln \frac{x+d}{d}}}
$$

$$
\boldsymbol{E}=-\frac{d V}{d x} \boldsymbol{a}_{x}=\underline{\underline{V_{o}}} \underline{\underline{(x+d) \ln 2} \boldsymbol{a}_{x}}
$$

(b) $\boldsymbol{P}=\left(\varepsilon_{r}-1\right) \varepsilon_{o} \boldsymbol{E}=-\left(\frac{x+d}{d}-1\right) \frac{\varepsilon_{o} V_{o}}{(x+d) \ln 2} \boldsymbol{a}_{x}=\underline{\underline{-\frac{\varepsilon_{o} x V_{o}}{d(x+d) \ln 2} \boldsymbol{a}_{x}}}$
(c)


$$
\begin{aligned}
& \left.\rho_{p s}\right|_{x=0}=\left.\boldsymbol{P} \bullet\left(-\boldsymbol{a}_{x}\right)\right|_{x=0}=\underline{=} \\
& \left.\rho_{p s}\right|_{x=d}=\left.\boldsymbol{P} \bullet \boldsymbol{a}_{x}\right|_{x=d}=-\frac{\varepsilon_{o} V_{o}}{2 d \ln 2}
\end{aligned}
$$

(d) $\boldsymbol{E}=\frac{\rho_{s}}{\varepsilon} \boldsymbol{a}_{x}=\frac{Q}{\varepsilon S} \boldsymbol{a}_{x}=\frac{Q}{\varepsilon_{o}\left(1+\frac{x}{d}\right) S} \boldsymbol{a}_{x}$
$V=-\int E \cdot d \boldsymbol{l}=-\frac{Q}{\varepsilon_{o} S} \int_{a}^{d} \frac{d x}{\left(1+\frac{x}{d}\right)}=\frac{Q}{\varepsilon_{o} S} d \ln 2$
$C=\frac{Q}{V}=\frac{\varepsilon_{o} S}{\underline{\underline{d \ln 2}}}$

## Prob. 6.56

We solve Laplace's equation for an inhomogeneous medium.
$\nabla \cdot(\varepsilon \nabla V)=\frac{d}{d x}\left(\varepsilon \frac{d V}{d x}\right)=0 \longrightarrow \varepsilon \frac{d V}{d x}=A$
$\frac{d V}{d x}=\frac{A}{\varepsilon}=\frac{A}{2 \varepsilon_{o}}\left[1+\left(\frac{x}{d}\right)^{2}\right]$
$V=\frac{A}{2 \varepsilon_{o}}\left(x+\frac{x^{3}}{3 d^{2}}\right)+B$
When $\mathrm{x}=\mathrm{d}, \mathrm{V}=\mathrm{V}_{\mathrm{o}}$,
$V_{o}=\frac{A}{2 \varepsilon_{o}}\left(d+\frac{d}{3}\right)+B \quad \longrightarrow \quad V_{o}=\frac{2 A d}{3 \varepsilon_{o}}+B$
When $\mathrm{x}=-\mathrm{d}, \mathrm{V}=0$,
$0=\frac{A}{2 \varepsilon_{o}}\left(-d-\frac{d}{3}\right)+B \quad \longrightarrow \quad 0=-\frac{2 A d}{3 \varepsilon_{o}}+B$
Adding (1) and (2), $\quad V_{o}=2 B \quad \longrightarrow B=V_{o} / 2$
From (2),
$B=\frac{2 A d}{3 \varepsilon_{o}}=\frac{V_{o}}{2} \longrightarrow A=\frac{3 \varepsilon_{o} V_{o}}{4 d}$
$E=-\nabla V=-\frac{d V}{d x} \boldsymbol{a}_{x}=-\frac{A}{\varepsilon} \boldsymbol{a}_{x}=-\frac{3 \varepsilon_{o} V_{o}}{4 d} \frac{\left[1+\left(\frac{x}{d}\right)^{2}\right]}{2 \varepsilon_{o}} \boldsymbol{a}_{x}=-\frac{-3 V_{o}}{8 d}\left[1+\left(\frac{x}{d}\right)^{2}\right] \boldsymbol{a}_{x}$
$\rho_{s}=D \cdot a_{n}=\left.\varepsilon E \cdot a_{x}\right|_{x=d}=-A=-\frac{3 \varepsilon_{o} V_{o}}{4 d}$
$Q=\int_{S} \rho_{s} d S=\rho_{s} S=-\frac{3 S \varepsilon_{o} V_{o}}{4 d}$
$C=\frac{|Q|}{V_{o}}=\underline{\underline{\frac{3 \varepsilon_{o} S}{4 d}}}$

Prob. 6.60
The images are shown with proper sign at proper locations. Figure does not show $1=$ actual direction of forces but they are expressed a follows:


$$
\begin{aligned}
& \mathbf{F}_{1}=\frac{Q^{2}}{4 \pi \varepsilon_{o}}\left[\frac{-\mathbf{a}_{\mathbf{x}}}{a^{2}}\right] \\
& \mathbf{F}_{2}=\frac{Q^{2}}{4 \pi \varepsilon_{o}}\left[\frac{a \mathbf{a}_{\mathbf{x}}+2 a \mathbf{a}_{\mathbf{z}}}{\left(\sqrt{a^{2}+4 a^{2}}\right)^{3}}\right] \\
& \mathbf{F}_{3}=\frac{Q^{2}}{4 \pi \varepsilon_{o}}\left[\frac{-\mathbf{a}_{\mathbf{z}}}{4 a^{2}}\right]
\end{aligned}
$$

$$
\mathbf{F}_{\text {total }}=\frac{Q^{2}}{4 \pi \varepsilon_{o} a^{2}}\left[\left(\frac{1}{5 \sqrt{5}}-1\right) \mathbf{a}_{\mathbf{x}}+\left(\frac{2}{5 \sqrt{5}}-\frac{1}{4}\right) \mathbf{a}_{\mathbf{z}}\right]
$$

$$
=\underline{\underline{\frac{Q^{2}}{4 \pi \varepsilon_{o} a^{2}}}\left[-0.91 a_{x}-0.071 a_{y}\right] \mathrm{N}}
$$

Prob. 6.63

$N=\left(\frac{360^{\circ}}{45^{\circ}}-1\right)=7$

## Prob. 6.64

(a)

$$
\begin{aligned}
\boldsymbol{E} & =E_{+}+E_{-}=\frac{\rho_{L}}{2 \pi \varepsilon_{o}}\left(\frac{a_{\rho 1}}{\rho_{1}}-\frac{a_{\rho 2}}{\rho_{2}}\right)=\frac{16 \times 10^{-9}}{2 \pi \times \frac{10^{-9}}{36 \pi}}\left[\frac{(2,-2,3)-(3,-2,4)}{|(2,-2,3)-(3,-2,4)|^{2}}-\frac{(2,-2,3)-(3,-)}{\mid(2,-2,3)-(3,-2}\right. \\
& =18 \times 16\left[\frac{(-1,0,-1)}{2}-\frac{(-1,0,7)}{50}\right]=\underline{\underline{-138.2 a_{x}-184.3 a_{y} \mathrm{~V} / \mathrm{m}}}
\end{aligned}
$$

(b) $\rho_{s}=D_{n}$
$D=D_{+}+D_{-}=\frac{\rho_{L}}{2 \pi}\left(\frac{a_{\rho 1}}{\rho_{1}}-\frac{a_{\rho 2}}{\rho_{2}}\right)=\frac{16 \times 10^{-9}}{2 \pi}\left[\frac{(5,-6,0)-(3,-6,4)}{|(5,-6,0)-(3,-6,4)|^{2}}-\frac{(5,-6,0)-(3,-6-}{\mid(5,-6,0)-(3,-5-}\right.$
$=\frac{8}{\pi}\left[\frac{(2,0,-4)}{20}-\frac{(2,0,4)}{20}\right] \mathrm{nC} / \mathrm{m}^{2}=-1.018 a_{z} \mathrm{nC} / \mathrm{m}^{2}$
$\underline{\underline{\rho_{s}=-1.018 \mathrm{nC} / \mathrm{m}^{2}}}$

