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Elimination of fast mode in hydrodynamics of superfluid turbulence. 
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Using the multi-time scales method we fulfill procedure of a separation of a fast and slow processes in the 
equations of HST. It is shown that slow stage of the evolution of transient heat load of moderate intensity 
obeys to the well-known non|inear heat conductivity equation. 

I. I n t r o d u c t i o n  

In the presence of vortex tangle (VT), or super- 
fluid turbulence (ST) ( See e.g. [1]) any flow (or 
counterflow) of the superfluid turbulent I/eli should 
be studied on base of equations of Hydrodynamics 
of Superfluid Turbulence (l/ST). lIST as well as the 
methods of investigation of some of the problems 
are reviewed in [2]. The set of equations of HST 
is very cumbersome therefore an investigation of any 
"important case requires numerical methods. How- 
ever numerical simulation of the relevant problems 
of nonstationary flow or/and counterflow faces one 
serious obstacle. The point is that the l/ST which 
unify usual equations of hydrodynamics of superfluid 
helium and the Vinen equation for evolution of the 
vortex line density (VLD) has initially hyperbolic 
character. As a result the slow variation of hydro- 
dynamic variables due to Gorter-Mellink force is ac- 
companied by fast processes connected with propa- 
gation (and possible reflections) of the second sound. 
If one is only interested in slow variation of the field 
of the temperature, velocities and (VLD) the details 
of propagation and manifold reflections of the sec- 
ond sound is a excess information, which requires a 
huge numerical resource. Therefore it seems to be 
attractive to exclude the fast modes by pure analyt- 
ical methods. In the present work we carry out the 
separation of slow and fast processes using the well 
known method of multi-time scales of the asymptotic 
theory of nonlinear equations [3]. 

2. M u l t i - t i m e  scale m e t h o d  

We will study a nonstationary counterflow of l/elI 
of the moderate intensity in channel of length L.  We 
will restrict ourselves by the quasi-one-dimensional 
cases, i.e. either pure one-dimensional one or cylin- 

drical or spherical geometries. Dimensional analysis 
of the equations of l/ST shows that among of di- 
mensionless criteria there is the criterion so called 
Strouhal number Sh which has a sense of the ra- 
tio between a decrement of damping the counterflow 
due to interaction with vortex tangle and the inverse 
time of the flight of the heat pulse. Depending on 
input parameters of the problem stated the number 
Sh can be either large or small. In these and only 
in these two limiting cases it is possible to realize 
effectively the procedure of separation of:the slow 
and fast processes. Numerical estimations that for 
moderate heat loads the Strouhal number is large 

Sh > >  1. (1) 

We will use this condition for effective separation 
of the processes with characteristic time to "-~ L/c2 
(second sound behavior) and of the processes with 
characteristic time tl = L/(c~Sh) (evolution due to 
counterflow-vortex tangle mutual friction ). 

Pursuing the goal to separate the fast and slow 
processes in the equations of the HST we use the 
multi- times scales method of theory of perturba- 
tions. Following this method we introduce different 
scales of times 

t~ =tO; t I -- d; t 2 : t2~ ....... (2) 

Where e = 1/Sh << 1. We are seeking for solution 
of set of the l/ST equations in form of asymptotic 
series 

V'. = Vd(= ' , t o ,  t l , t 2 )  + ( V f ( = ' , t o , t l , t 2 )  + ... 
T '  = + , T I ( = ' , t o , t , , t 2 )  + . .  

.L = n'o(=' , to,  t l , t 2 )  + tl,t ) + ... 
(3) 
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The coefficients in series for normal velocity V/, tem- 
perature 7~ and (VLD) Li are supposed to be of order 
of unit. These variables as well as variables x* and t' 
are made dimensionlcss by usual way (see e.g. [5]) 
Tile following step in studying of slow evolution of 
heat pulse is in substituting of multi-time scales se- 
ries (2)(3) into equations of IIST (see [1]). Gather- 
ing terms of the same order of smallness we obtain 
a chain of equations which lead to divergent (secu- 
lar) solutions. Canceling step by step these seculari- 
ties we obtain sets of equations of different orders of 
smallness (in parameter e) governing different stages 
of evolution of the fields of temperature, counter- 
flow velocities and (VLD). Studying the zero order 
we conclude that a first (fast) stage is propagation 
of heat pulses by the second sound mechanism which 
is subjected to strong attenuation due to interaction 
with superfluid turbulence. Analysis of the first or- 
der equations shows that after some period the sec- 
ond sound mode degenerated and further evolution 
of all of fields obey to other equations, which have 
a parabolic character unlike initial hyperbolic equa- 
tions. 

3. The  Dresne r  nonl inear  hea t  conduc t iv i ty  
equat ion .  
Let us consider the first e 1 approach in more de- 

tails. Here we will restrict ourselves by the plain 
case. The set of dimensionless equations for the di- 
mensional normal velocity, temperature and VLD 

O Vo 3 b 2 Vo O To cO Vo 
ot'  - ; o t l  + , (4) 

Lo/ L,~ = Vo 2 

Here V0, To, L0 are zero terms in series (3) for di- 
mensional normal velocity, temperature and VLD. 
Furthermore, excluding quantity V0 from the set of 
equations written above we arrive at the following 
relation 

Oro o fOro  "3 
o t l  = o = , \ o = , /  " (5) 

Relation (5) coincides with the widely used nonlinear 
heat-conductivity equation derived by Dresner (see 
[4]). In this connection it is worth discussing the 
method used by Dresner. Ite started with Gorter- 
Mellink relation which in our (dimensionless) nota- 
tion takes a form 

OT' v,3 (6) c3z'1 ' = .. 

Remembering that hcat flux q is related with nor- 
mal velocity V, by relation q -- STV,  and using 

the energy conservation law Dresner derived equa- 
tion similar to the equation (5). This method how- 
ever is not correct from point of view of the full set 
of equations of lIST. Indeed the Gorter-Mellink re- 
lations corresponds only to steady flow and in the 
nonstationary case one have to add the term OV'/Ot' 
in l.h.s, of Eq. (6). But neglecting this term implies 
that V~ = V'(z) which in turn implies that the tem- 
perature 7" is also function of only z and does not 
change in time. In our approach OV~/Ot~ # 0 and 
there is no contradiction. It shows that regime of 
the nonlinear heat-conductivity equation takes place 
only for "slow" time and validity of overall procedure 
requires a fulfillment of conditions 1. To conclude 
this chapter we would like to point out the region of 
fulfillment of the condition (1) in terms of heat flux 
and of sizes of channels. Using the definition of the 
Sh number and thermodynamic parameters we ob- 
tain that in the temperature region T = 1.4 + 2.1K 
condition (1) is equivalent to the following one: 

q2L >> 0.2 + 0.6 W / c m  2. (7) 

Thus for heat load of moderate intensity q = 1 + 
10 W / c m  2 and for sizes of the channels L = 10 + 
102cm relation (1) and consequently (7) are valid 
with a good accuracy. 

4. Conclus ion  

We described a procedure of a separation of a fast 
and slow processes in the equations of HST. As an 
illustration of the procedure developed we studied a 
slow stage of the evolution of transient heat load of 
moderate intensity, showed that it coincided with the 
Dresner description and found a range of its validity. 
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