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Linear superposition principle for partially coherent solitons

Sergey A. Ponomarenko
Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627
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The existence of a linear superposition principle is demonstrated for partially coherent solitons with identical
intensity profiles that are supported by the same medium. Since such degenerate partially coherent solitons are
generic for saturable as well as for Kerr-like nonlinear media, our results are relevant to any noninstantaneous
nonlinear media. The proposed superposition principle suggests a physical interpretation of partially coherent
solitons as generalized linear modes of their self-induced waveguides. The power of such a superposition
principle is illustrated by identifying soliton structures with controllable coherence properties both in logarith-
mically saturable and in Kerr-like nonlinear media.
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In recent years, partially coherent spatial solitons ha
attracted much attention, especially after such solitons
been successfully generated in pioneering experiments u
biased photorefractive crystals@1#. To date, three theoretica
approaches have been developed to study partially cohe
solitons. The first approach relies on the nonlinear propa
tion equation for the equal-time correlation function of
partially coherent beam@2–4#. The second method intro
duces the so-called coherent density function@5,6#, whereas
the third is the self-consistent multimode approach@7–9#.
Recently, all the three methods have been shown to
equivalent@10#.

The self-consistent multimode method has been espec
fruitful because not only is it best suited for identifying fam
lies of stationary solitons existing in saturable@11–13# as
well as in Kerr-like media@14–20#, but it also provides a
valuable physical insight into the structure of partially coh
ent solitons. In essence, this approach views a partially
herent soliton as an incoherent superposition of mutually
correlated, nonlinear modes of the waveguide which
induced in the medium via nonlinearity. This view impar
physical intuition by making it possible to draw analogi
with the theory of linear waveguides@21#. In particular, in
the case of a linear multimode waveguide, any be
launched into the waveguide can be represented as a l
superposition of the modes of the waveguide. In this conn
tion, it should be noted that in many cases, the same s
induced waveguide can be shown to support more than
partially coherent soliton with the same intensity profi
@13,16,18#. By analogy with the linear waveguide theory, o
may then ask whether alinear superposition of such degen
erate partially coherent solitons can under certain circu
stances result in another soliton trapped by the same w
guide.

In this Rapid Communication, we show that any line
superposition of degenerate partially coherent solito
which preserves the total intensity of the self-induced wa
guide, results in yet another soliton supported by the wa
guide. The existence of such a superposition principle p
vides a new insight into the physical nature of partia
coherent solitons. On the one hand, such solitons can
treated as multisoliton complexes that reshape upon c
sions @15,19#. On the other hand, each degenerate parti
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coherent soliton can be viewed as a generalized linear m
of the self-induced waveguide, and it serves as an elemen
building block for more complicated soliton structures.
should be emphasized that the present approach differs
previous studies of multisoliton complexes@15,19# in two
respects. First of all, while explicit analytic results of Re
@15,19# apply to integrable, Kerr-like systems, our superp
sition principle holds for any nonlinear medium supporti
degenerate partially coherent solitons. Second, the autho
@19# consider multisoliton complexes with the fundamen
solitons~or the nonlinear modes! that can be mutually eithe
correlated or uncorrelated. In our case, however, all of
nonlinear modes of the self-induced waveguide are mutu
uncorrelated, but there are correlations among the degen
partially coherent solitons which are linearly superposed.

We also demonstrate that linear superpositions of parti
coherent solitons in saturable and in nonsaturable media
sult in a variety of soliton structures with modified coheren
properties. The particular examples of solitons in logarithm
cally saturable and in Kerr-like media are considered. F
ther, thecoherentnature of such a linear superposition lea
to interferenceeffects among degenerate partially cohere
solitons, which are manifested in the change of the effec
soliton spatial coherence length. The spatial coherence le
is a fundamental characteristic of a partially coherent solit
which has been shown to define the threshold for modu
tional @22# and transverse@23# instabilities as well as that o
a collapse of such a soliton in inertial Kerr media@24#.
Therefore, the proposed superposition principle may prov
a useful tool for producing partially coherent solitons wi
desirable properties.

To begin, we consider a paraxial partially, coherent be
propagating in a noninstantaneous nonlinear medium al
the z axis. The second-order statistical properties of suc
beam are fully specified by the equal-time correlation fun
tion G(r1 ,r2 ,z) ~Chap. 4 of@25#! at a pair of pointsr1 and
r2 in the plane transverse to thez axis. The propagation o
the equal-time correlation function in the nonlinear regime
governed by the generalized Wolf’s equation@2,10#

2ik]zG~r1 ,r2 ,z!1~¹'1
2 2¹'2

2 !G~r1 ,r2 ,z!1k2@nnl
2 ~ I 1!

2nnl
2 ~ I 2!#G~r1 ,r2 ,z!50, ~1!
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wherennl(I ) is the nonlinear refractive index,I j[I (rj ), j
51,2, and“' is a gradient transverse to the direction
propagation of the beam.

In order for a partially coherent beam to be a soliton
ought to induce the waveguide whose modes can reprod
its intensity profile. Suppose now that the self-induced wa
guide can support more than one soliton with the same
tensity profile. We label such a degeneracy by the se
indices$n%. It follows from Eq. ~1! that the equal-time cor
relation functionGn(r1 ,r2) of each degenerate soliton obe
the equation

~¹'1
2 2¹'2

2 !Gn~r1 ,r2!5k2@nnl
2 ~ I 2!2nnl

2 ~ I 1!#Gn~r1 ,r2!,
~2!

which conveys the simple physical idea of balance betw
the nonlinear refraction and diffraction. It should be kept
mind that in Eq.~2!

I j[I ~rj !5Gn~rj ,rj !, ~3!

whereI (r) is the common intensity profile.
Consider next the linear superposition of equal-time c

relation functions of the formGs(r1 ,r2)5(ncnGn(r1 ,r2),
where $cn% are constant coefficients. One can readily in
from Eqs.~2! and ~3! that Gs will satisfy the same equation
~2! as everyGn does, provided the intensity of the resultin
soliton at every pointr is equal to the intensity of eac
component, i.e.,

I s~r!5I ~r!. ~4!

Condition~4! is equivalent to the constraint on the values
the set of coefficients$cn%, (ncn51. Thus we have proven
the following assertion.

Theorem 1. Any linear superposition of partially coheren
solitons with the equal-time correlation function
$Gn(r1 ,r2)% which have the same intensity profileI (r), is
also a soliton with the equal-time correlation function giv
by the expression

Gs~r1 ,r2!5(
n

cnGn~r1 ,r2!, ~5!

provided that the values of the coefficients$cn% satisfy the
condition

(
n

cn51. ~6!

To appreciate the physical significance of Eq.~6!, recall that
in general, the effective width of the soliton intensity profi
depends on the soliton power,P5*d2rI (r). Therefore, con-
dition ~6! implies that the total power must be the same
order to maintain the same effective soliton width. Anoth
point to bear in mind is that the coefficientscn’s need not be
numerical constants. In fact they can be expressed in te
of N21 free parameters in the case ofN-fold degeneracy of
the self-induced waveguide. In particular, one can cho
N21 angles, which fix the position of a unit vectorn in the
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N-dimensional parametric space. The constraint~6! can then
be rewritten as(n nn

251. It follows from this geometric ar-
gument that all possible compound solitons correspond to
points on the surface of a unit sphere in such a parame
space.

We now turn to the illustrations of the proposed superp
sition principle. Consider first the logarithmically saturab
medium with the nonlinear refractive indexnnl of the form

nnl
2 ~ I !5~Dn!2ln~11I /I t!, ~7!

whereDn and I t are constants specified by the material.
was shown in Ref.@13# that in such a medium, the equa
time correlation function of the most general partially coh
ent soilton with a circularly symmetric intensity profile, th
twisted Gaussian Schell-model soliton~TGSM!, has the form

G~r1 ,r2!5I 0 expS 2
r1

21r2
2

4s I
2 D expF2

~r12r2!2

2sc
2 G

3exp~ iuur13r2u!. ~8!

Here I 0 is the peak intensity of the soliton, and the solito
width s I , the soliton coherence lengthsc , and the twist
parameteru are related by the self-consistency condition

s I

sc

5F ~a221!/2

11A11u2sc
4~a221!

G 1/2

, ~9!

wherea252k2s I
2(Dn)2. Moreover, the twist parameter sa

isfies the inequality21/sc
2<u<1/sc

2 @13#.
Let us introduce the equal-time degree of spatial coh

ence of a soliton at a pair of pointsr1 andr2 defined by the
expression~Ref. @25# @Sec.4.2#!

g~r1 ,r2!5
G~r1 ,r2!

AI ~r1!AI ~r2!
. ~10!

The analysis of Eq.~9! indicates that~i! given the values of
s I and sc , there exists twofold degeneracy of TGSM so
tons with respect to the sign ofu, ~ii ! for a fixed soliton
width s I , there exists a continuum of the pairs of (sc ,u)
that satisfy Eq.~9!. We will employ only the first type of
degeneracy. In particular, let us consider a superposition w
c15c251/2 of TGSM solitons withsc15sc2[sc and u1
52u2[u. It follows at once from Eqs.~5!, ~8!, and ~10!
that the equal-time degree of spatial coherence of the re
ing soliton is given by

gs~r1 ,r2!5expF2
~r12r2!2

2sc
2 Gcos~uur13r2u!. ~11!

Further, we define the effective coherence length of a
11)D soliton by the expression

l c
2~r!5E

2`

` E
2`

` ddxddy

p
ugs~x,y;x1dx ,y1dy!u2. ~12!
1-2
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Substituting from Eq.~11! into Eq. ~12!, one obtains for the
coherence length of the equally weighed superposition
TGSM solitons withsc15sc2[sc andu152u2[u the ex-
pression

l c~r!5scS 11e2u2sc
2r2

2
D 1/2

. ~13!

Two conclusions can be drawn from Eq.~13!. First of all,
any superposition of TGSM solitons results in the dep
dence of the coherence length at a particular point on
location of the point within the self-trapped beam. This is
novel feature for solitons in the logarithmic medium. Se
ond, the coherence length of the resulting soliton is ne
greater than the coherence length of a TGSM soliton,l c(r)
<sc , and l c can be controlled by varying the twist param
eter.

The existence of degenerate partially coherent solit
was also demonstrated in both defocusing@16# and focusing
@18# Kerr-like media. In either case, stable partially coher
solitons have been shown to consist of bound modes as
as of the continuum of radiation modes whose distribut
depends on the angular spectrum of a partially cohe
source. In this paper, we consider only (111)D dark, de-
generate solitons with the intensity profile of the form

I ~h!5I 0@12e2 sech2~h!#. ~14!

Here I 0 is the background intensity,e2<1 specifies the de
gree of grayness of the soliton, andh5x/x0, wherex0 is the
soliton width. It was shown in Ref.@16# that if x0
52/k0e2n2I 0, there is only one bound mode given by th
expression

Ub~h!5sech~h!, ~15a!

and the allowed even and odd radiation modes can be re
sented as

Ue~h,Q!5Q cos~Qh!2sin~Qh!tanh~h!, ~15b!

Uo~h,Q!5Q sin~Qh!1cos~Qh!tanh~h!. ~15c!

Herek05k/n0 is the free-space wave vector,n0 andn2 are
the linear part of the refractive index and the nonlinear K
coefficient, respectively. Also,Q25@k0

2(n0
22n2I 0)2b2#x0

2

.0, whereb is the mode propagation constant.
An ensemble realization of the electric fieldE(h,z) can

then be written as

E~h,z!5cbUb~h!eibbz1E dQ@ce~Q!Ue~h,Q!

1co~Q!Uo~h,Q!#eibr (Q)z, ~16!

wherecb and ce,o(Q) are the random temporal coefficien
of the bound and radiation modes, andbb as well asb r(Q)
are the corresponding propagation constants. To achieve
trapping, one has to impose the following statistics of
temporal coefficients:
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^ucbu2&5lb , ~17a!

^ce* ~Q!co~Q8!&5^cb* ~Q!ce,o~Q8!&50, ~17b!

^ce* ~Q!ce~Q8!&5^co* ~Q!co~Q8!&5D~Q!d~Q2Q8!,
~17c!

wherelb is the weight of the bound mode, andD(Q) is the
distribution function of radiation modes. One can show th
for any givenD(Q), the modes reproduce the intensity pr
file of Eq. ~14! provided thatI 05*dQ(11Q2)D(Q), and
lb5*dQD(Q)2e2I 0.

Let us consider two possible distributions of radiati
modes:

D1~Q!5Z1e2Q/s1, 0<Q<Qmax ~18a!

D2~Q!5Z2e2(Q2Q0)2/2s2
2
, uQu<Qmax. ~18b!

where s1,2 is the width of the corresponding distribution
Qmax5k0x0An0

22n2I 0. A particular distributionD(Q) is
specified by the angular spectrum of the light source. Thu
order to generate, for example, the distribution defined
expression~18a!, one has to prepare a partially cohere
source whose angular spectrum decreases with the la
angle@26#, whereas to produce the distribution of Eq.~18b!,
one should use a light source with the angular spectr
peaked around a finite angle corresponding to the spa
frequency Q0. Consider now a linear superposition wit
c1(u)5cos2u andc2(u)5sin2u of degenerate solitons corre
sponding toD1(Q) and D2(Q). The equal-time degree o
spatial coherence of the compound soliton at the points w
coordinatesh andh1d can be represented as

g tot~h,h1d!5 (
j 51,2

cj~u!g j~h,h1d!. ~19!

Here u is a free parameter, the ‘‘mixing angle,’’ an
g j (h,h1d) is the equal-time degree of spatial coherence

FIG. 1. The coherence length of the superposition of two d
solitons as a function of the positionh within the soliton for differ-
ent values of the mixing angleu: ~a! u50, ~b! u5p/6, ~c! u
5p/3, and~d! u5p/2. The numerical values of the parameters a
e250.5, s15s25Q050.7.
1-3
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each degenerate soliton. One can then determine the so
coherence length defined by the expression

l tot~h!5E
2`

`

ddug tot~h,h1d!u2. ~20!

In Fig. 1, we have displayed the coherence length of
compound soliton as a function of the positionh for differ-
ent values of the mixing angleu. The limiting casesu50
andu5p/2 correspond to the presence of only one partia
coherent soliton in superposition~19!. It is seen from the
figure that on varying the mixing angle, one can significan
modify the behavior of the coherence length. In particu
due to the interference of the soliton components, the co
ence length of the compound soliton can reach either m
mum or maximum ath50 depending on whether the con
tribution of the odd radiation modes or those of the ev
tt.
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radiation modes and the bound mode dominate in the vici
of this point.

In summary, we have discovered a linear superposit
principle for partially coherent solitons with the same inte
sity profile. Our arguments hold for any such degenerate s
tons regardless of the functional form of the nonlinearity
the medium. The present approach offers an alternative v
of partially coherent solitons as generalized linear modes
the self-induced waveguide. The interference of such ge
alized modes may be useful in designing spatial solitons w
prescribed coherence properties. Numerical examples
considered for the solitons in saturable logarithmic as wel
in Kerr-like nonlinear media.

The author thanks Professor Emil Wolf for a critical rea
ing of the manuscript. This research was supported by
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@12# N. M. Litchinitser, W. Królikowski, N. N. Akhmediev, and
G. P. Agrawal, Phys. Rev. E60, 2377~1999!.

@13# S. A. Ponomarenko, Phys. Rev. E64, 036618~2001!.
.

t.

,

.

@14# V. Kutuzov, V. M. Petnikova, V. V. Shuvalov, and V. A
Vysloukh, Phys. Rev. E57, 6056~1998!.
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