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Linear superposition principle for partially coherent solitons
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The existence of a linear superposition principle is demonstrated for partially coherent solitons with identical
intensity profiles that are supported by the same medium. Since such degenerate partially coherent solitons are
generic for saturable as well as for Kerr-like nonlinear media, our results are relevant to any noninstantaneous
nonlinear media. The proposed superposition principle suggests a physical interpretation of partially coherent
solitons as generalized linear modes of their self-induced waveguides. The power of such a superposition
principle is illustrated by identifying soliton structures with controllable coherence properties both in logarith-
mically saturable and in Kerr-like nonlinear media.
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In recent years, partially coherent spatial solitons havesoherent soliton can be viewed as a generalized linear mode
attracted much attention, especially after such solitons hadf the self-induced waveguide, and it serves as an elementary
been successfully generated in pioneering experiments usidguilding block for more complicated soliton structures. It
biased photorefractive crystdl$]. To date, three theoretical Should be emphasized that the present approach differs from
approaches have been developed to study partially cohereBtevious studies of multisoliton complexg$5,19 in two
solitons. The first approach relies on the nonlinear propaga€spects. First of all, while explicit analytic results of Refs.
tion equation for the equal-time correlation function of al15.19 apply to integrable, Kerr-like systems, our superpo-
partially coherent beani2—4]. The second method intro- Sition principle holds for any nonlinear medium supporting
duces the so-called coherent density func{ibs6], whereas —degenerate partially coherent solitons. Second, the authors of
the third is the self-consistent multimode approdgr9].  [19] consider multisoliton complexes with the fundamental
Recently, all the three methods have been shown to bgolitons(or the nonlinear modg¢shat can be mutually either
equivalent 10]. correlated or uncorrelated. In our case, however, all of the

The self-consistent multimode method has been especialfjonlinear modes of the self-induced waveguide are mutually
fruitful because not only is it best suited for identifying fami- Uncorrelated, but there are correlations among the degenerate
lies of stationary solitons existing in saturafjtel—13 as  Partially coherent solitons which are linearly superposed.
well as in Kerr-like medig14—20, but it also provides a We also demonstrate that linear superpositions of partially
valuable physica] |ns|ght into the structure of parna”y Coher_COherent solitons in saturable and in nonsaturable media re-
ent solitons. In essence, this approach views a partially cosult in a variety of soliton structures with modified coherence
herent soliton as an incoherent superposition of mutually unProperties. The particular examples of solitons in logarithmi-
correlated, nonlinear modes of the waveguide which iscally saturable and in Kerr-like media are considered. Fur-
induced in the medium via nonlinearity. This view imparts ther, thecoherentnature of such a linear superposition leads
physica| intuition by making it possib|e to draw ana|ogiest0 interferenceeffects among degenerate partlally coherent
with the theory of linear waveguidd®1]. In particular, in solitons, which are manifested in the change of the effective
the case of a linear multimode waveguide, any beansoliton spatial coherence length. The spatial coherence length
launched into the waveguide can be represented as a lineigra fundamental characteristic of a partially coherent soliton,
superposition of the modes of the waveguide. In this connec¥hich has been shown to define the threshold for modula-
tion, it should be noted that in many cases, the same selfional[22] and transversg23] instabilities as well as that of
induced waveguide can be shown to support more than or collapse of such a soliton in inertial Kerr medi24].
partially coherent soliton with the same intensity profile Therefore, the proposed superposition principle may provide
[13,16,18. By analogy with the linear waveguide theory, one @ u;eful tool for .producmg partially coherent solitons with
may then ask whether lmear superposition of such degen- desirable properties.
erate partially coherent solitons can under certain circum- 10 begin, we consider a paraxial partially, coherent beam
stances result in another soliton trapped by the same wav@ropagating in a noninstantaneous nonlinear medium along
guide. the z axis. The second-order statistical properties of such a

In this Rapid Communication, we show that any linearb@am are fully specified by the equal-time correlation func-
superposition of degenerate partially coherent solitonstion I'(p1,p2,2) (Chap. 4 of[25]) at a pair of pointg, and
which preserves the total intensity of the self-induced wavef2 in the plane transverse to tizeaxis. The propagation of
guide, results in yet another soliton supported by the wavethe equal-time correlation function in the nonlinear regime is
guide. The existence of such a superposition principle progoverned by the generalized Wolf's equatié@10]
vides a new insight into the physical nature of partially
coherent solitons. On the one hand, such solitons can be2ikd,I'(p;,p2,2)+ (V2= V2,)T(p1,ps.2) + kN3 (14)
treated as multisoliton complexes that reshape upon colli- )
sions[15,19. On the other hand, each degenerate partially —n5 (1210 (p1,p2,2)=0, 1)
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wheren,,(I) is the nonlinear refractive index;=1(p;), N-dimensional parametric space. The constréitcan then

=1,2, andV, is a gradient transverse to the direction of be rewritten asE,,nﬁzl. It follows from this geometric ar-

propagation of the beam. gument that all possible compound solitons correspond to the
In order for a partially coherent beam to be a soliton, itpoints on the surface of a unit sphere in such a parametric

ought to induce the waveguide whose modes can reproducpace.

its intensity profile. Suppose now that the self-induced wave- We now turn to the illustrations of the proposed superpo-

guide can support more than one soliton with the same insition principle. Consider first the logarithmically saturable

tensity profile. We label such a degeneracy by the set ofmedium with the nonlinear refractive index, of the form

indices{v}. It follows from Eg. (1) that the equal-time cor-

relation functionl",(p, ,p,) of each degenerate soliton obeys n2,(1)=(An)2n(1+1/1), (7)

the equation
whereAn and |, are constants specified by the material. It

(V2= V2 )T (p1.p2)=K[NnZ, (1) —nZ ()T (p1.p2), was shown in Ref[13] that in such a medium, the equal-
(2)  time correlation function of the most general partially coher-
ent soilton with a circularly symmetric intensity profile, the

which conveys the simple physical idea of balance betweeRyisted Gaussian Schell-model solittFGSM), has the form
the nonlinear refraction and diffraction. It should be kept in
pi+p§) p[ (p1—p2)°
exg ————

mind that in Eq.(2)
I'(pr.p2)=loexp —
Li=1(p)=T"(p; Py, (3) 4ot 20¢

wherel (p) is the common intensity profile. X expiu[p1X pyl). ®
Consider next the linear superposition of equal-time cor- _ ) ) ) _
relation functions of the fornT(py,py) ==,¢,T ,(p1.p,) Herel, is the peak intensity of the soliton, and the soliton
S ’ vert v ’ ’ . . N
where{c,} are constant coefficients. One can readily infer¥idth o1, the soliton coherence lengidi;, and the twist
from Egs.(2) and (3) that T, will satisfy the same equation parametewn are related by the self-consistency condition
(2) as everyl', does, provided the intensity of the resulting

12

soliton at every pointp is equal to the intensity of each a (a?=1)/2 ©)
component, i.e., o |1+ /1+u20§(a2_1)
ls(p)=1(p). 4

where a?=2k?a?(An)?. Moreover, the twist parameter sat-

Condition (4) is equivalent to the constraint on the values ofisfies the inequality- 1/o5<u<1/o? [13].

the set of coefficient$c,}, =,c,=1. Thus we have proven Let us introduce the equal-time degree of spatial coher-

the following assertion. ence of a soliton at a pair of poingg andp, defined by the
Theorem 1Any linear superposition of partially coherent expression(Ref.[25] [Sec.4.2)

solitons with the equal-time correlation functions

{T',(p1,p,)} which have the same intensity profilép), is ( ) I'(p1.p2) (10
. . R . . . B ’y pllpz = ———
also a soliton with the equal-time correlation function given o0 (p1) (0. (po)

by the expression

The analysis of Eq(9) indicates thati) given the values of

Fs(plaPZ):E c,I(p1.p2), (5) o) and_crc, there exists twqfold deg_eneracy pf TGSM soli-

v tons with respect to the sign af, (i) for a fixed soliton
width o, there exists a continuum of the pairs af.,u)
that satisfy Eq.(9). We will employ only the first type of
degeneracy. In particular, let us consider a superposition with
c1=C,=1/2 of TGSM solitons witho¢;=0o,=0. and u,
2 c,=1. (6) =—u,=u. It follows at once from Eqgs(5), (8), and (10)
v that the equal-time degree of spatial coherence of the result-

ing soliton is given by

provided that the values of the coefficiedts,} satisfy the
condition

To appreciate the physical significance of Eg), recall that

in general, the effective width of the soliton intensity profile (p1— po)?
depends on the soliton powd= [d?pl(p). Therefore, con- vs(p1,.p2) =€xpg — 1—22 cofulp;Xpo|). (11
dition (6) implies that the total power must be the same in 20

order to maintain the same effective soliton width. Another i )

point to bear in mind is that the coefficientss need not be ~Further, we define the effective coherence length of a (2
numerical constants. In fact they can be expressed in ternis 1)D soliton by the expression

of N—1 free parameters in the caseNffold degeneracy of

the self-induced_wa\{eguide. In_ particular,. one can choose |§(p):f°° fw d5Xd5ylys(X,y;X+5X,y+5y)|2. 12
N—1 angles, which fix the position of a unit vectoiin the T
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Substituting from Eq(11) into Eq.(12), one obtains for the 07
coherence length of the equally weighed superposition of I /l,om (a) ' (b)
TGSM solitons witho . = o¢,= o andu, = —u,=u the ex- N 0.6
pression 0.5
14 o2 112 -10 -5 0 5 10 10 -5 0 5 10
IC(p) =0¢ 2 (13) 0.6 (C) 1.4 (d)
. . l./zo 0.9
Two conclusions can be drawn from E@.3). First of all,
any superposition of TGSM solitons results in the depen- 0.3 0.4
dence of the coherence length at a particular point on the 10 5 0 5 10 10 5 0 5 10
location of the point within the self-trapped beam. This is a 7 n

novel feature for solitons in the logarithmic medium. Sec-
ond, the coherence length of the resulting soliton is never

greater than the coherence length of a TGSM solitgn) FIG. 1. The coherence length of the superposition of two dark

. . solitons as a function of the positiopwithin the soliton for differ-
<o, andl; can be controlled by varying the twist param- ent values of the mixing anglé: () 6=0, (b) 6=/6, () 6

eter'h . fd Al h i = /3, and(d) 6= =/2. The numerical values of the parameters are
The existence o egenerate partla y CO erent so It0n§2:0.5l 1= 0,=Q,=0.7.

was also demonstrated in both defocusdifh§] and focusing
[18] Kerr-like media. In either case, stable partially coherent

2\

solitons have been shown to consist of bound modes as well (leol %)=, (179
as of the continuum of radiation modes whose distribution N Py Sy
depends on the angular spectrum of a partially coherent (ca(Q)co(Q"))=(cp(Q)Ceo(Q"))=0,  (17b)
source. In this paper, we consider only41)D dark, de- N , N , ,
generate solitons with the intensity profile of the form (€e(Q)ce(Q'))=(c5(Q)co(Q))=D(Q)8(Q-Q 217 )

0

I()=1o[1— €*sech(n)]. (14)

where\, is the weight of the bound mode, afiy{Q) is the
Herel, is the background intensitﬁzgl Speciﬁes the de- distribution function of radiation modes. One can show that
gree of grayness of the soliton, ane-x/x,, wherex, is the ~ for any givenD(Q), the modes reproduce the intensity pro-
soliton width. It was shown in Ref[16] that if x, file of Eq. (14) provided thatly=/dQ(1+Q?)D(Q), and
=2/koe2n,l,, there is only one bound mode given by the Ao=/dQD(Q) —€l,.

expression Let us consider two possible distributions of radiation
modes:
Up(7)=sectiz), (158 ole
Dy(Q)=2,€ 1, 0sQ=Qpax (183
and the allowed even and odd radiation modes can be repre-
2
sented as Dy(Q)=2,6" Q2% |Q|<Qpayx. (180

Ue(7,Q)=QcodQn)—sin(Qn)tani(z), (15D \where ¢y , is the width of the corresponding distribution,
o Qmax=k0x0\/n02—nzlo. A particular distributionD(Q) is

Uo(7,Q)=QsiN(Qn)+codQmtant(n). (150 ghacified by the angular spectrum of the light source. Thus in

order to generate, for example, the distribution defined in

Hereko=k/n is the free-space wave vectar, andn, are expression(18a), one has to prepare a partially coherent
the linear part of the refractive index and the nonlinear Kerr P ' prep P Y

- . source whose angular spectrum decreases with the launch
coefficient, rc—_:‘spectlvely. AlSOQZZLkg(ng_nZIO)_'Bz]XS angle[26], whereas to produce the distribution of Ef8b),
>0, whereg is the mode propagation constant.

A bl lizati f the electric fi one should use a light source with the angular spectrum
n ensemble realization of the electric fief(#,2) can  yaaked around a finite angle corresponding to the spatial
then be written as

frequency Qq. Consider now a linear superposition with
c,(6) =cosd andc,( 0) =sirPd of degenerate solitons corre-

E(7,2)=cpUy( n)eiBbZJ,-j dQ[ce(Q)U(7,Q) sponding toD4(Q) and D,(Q). The equal-time degree of
spatial coherence of the compound soliton at the points with
+¢o(Q)Uy(7,Q)]eAr(Q7, (16)  coordinatesy and + 6 can be represented as
wherecy, andc, ,(Q) are the random temporal coefficients 15 = (0)v: s 19
of the bound and radiation modes, afiglas well asg,(Q) Vot 7,771 9) ,—2201( )YiCn,m+ ). (19

are the corresponding propagation constants. To achieve self-
trapping, one has to impose the following statistics of theHere 6 is a free parameter, the “mixing angle,” and
temporal coefficients: ¥j(7m,n+ 6) is the equal-time degree of spatial coherence of
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each degenerate soliton. One can then determine the solitwadiation modes and the bound mode dominate in the vicinity
coherence length defined by the expression of this point.
In summary, we have discovered a linear superposition
o principle for partially coherent solitons with the same inten-
lioi( )= f dd| yioi 7, 7+ 6)|2. (20 sity profile. Our arguments hold for any such degenerate soli-
- tons regardless of the functional form of the nonlinearity of
the medium. The present approach offers an alternative view
In Fig. 1, we have displayed the coherence length of thef partially coherent solitons as generalized linear modes of
compound soliton as a function of the positigrfor differ-  the self-induced waveguide. The interference of such gener-
ent values of the mixing anglé. The limiting cases#=0 alized modes may be useful in designing spatial solitons with
and §= /2 correspond to the presence of only one partiallyprescribed coherence properties. Numerical examples are
coherent soliton in superpositiofl9). It is seen from the _considered for the solitons_in saturable logarithmic as well as
figure that on varying the mixing angle, one can significantlyin Kerr-like nonlinear media.

modify the behavior of the coherence length. In particular, The author thanks Professor Emil Wolf for a critical read-
due to the interference of the soliton components, the coheing of the manuscript. This research was supported by the
ence length of the compound soliton can reach either miniAir Force Office of Scientific Research under Grant No.
mum or maximum aty=0 depending on whether the con- F49620-96-1-0400 and by the Department of Energy under
tribution of the odd radiation modes or those of the evenGrant No. DE-F602-90ER14119.
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