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Temporal Talbot effect in free space
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The temporal Talbot effect refers to the periodic revivals
of a pulse train propagating in a dispersive medium and is
a temporal analog of the spatial Talbot effect with group-
velocity dispersion in time replacing diffraction in space.
Because of typically large temporal Talbot lengths, this
effect has been observed to date in only single-mode fibers,
rather than with freely propagating fields in bulk disper-
sive media. Here we demonstrate for the first time, to the
best of our knowledge, the temporal Talbot effect in free
space by employing dispersive space-time wave packets,
whose spatiotemporal structure induces group-velocity
dispersion of controllable magnitude and sign in free
space. © 2021 Optical Society of America

https://doi.org/10.1364/OL.425635

The Talbot effect, reported for the first time in 1836 [1], refers
to the axial revivals of an initially periodic transverse spatial field
structure [2]. This fascinating phenomenon has found a broad
range of applications, spanning structured illumination in fluo-
rescence microscopy [3–5] to prime-number decomposition
[6], and phase-locking of laser arrays [7]. In an analogous tempo-
ral Talbot effect, whereupon group-velocity dispersion (GVD)
in time replaces diffraction in space [8,9], a periodic pulse train
of period T traveling in a dispersive medium undergoes periodic
revivals at multiples of the temporal Talbot distance zT =

T2

π |k2|
,

where k2 is the GVD parameter [9]. This effect was proposed in
[10], demonstrated experimentally in [11] (and subsequently in
[12,13]), and has been used in removing pulse distortion [14],
pulse-rate multiplication [12,15], and pulse compression [16].

The temporal Talbot effect has yet to be observed in a freely
propagating optical field. Because dispersion lengths for typical
pulse trains are usually very large, the temporal Talbot effect has
been instead realized only in single-mode fibers (zT on the order
of kilometers, with k2 ≈−26 fs2/mm at 1500 nm) [11] or in
fiber Bragg gratings with higher GVD [14] (zT on the order of
tens of centimeters with k2 ≈−105 fs2/mm) [Fig. 1(a)], but
not in dispersive bulk media where diffraction that unavoidably
accompanies propagation hampers its observation.

Here we demonstrate—for the first time to the best of our
knowledge—the temporal Talbot effect in a freely propagating
field over short distances (a few centimeters) in free space, with-
out resort to any dispersive medium [Fig. 1(b)]. This surprising
effect is made possible by exploiting dispersive “space-time”

(ST) wave packets [17]. In general, ST wave packets [18–20] are
pulsed beams endowed with a precise spatiotemporal structure
[21–23] inculcating angular dispersion [24,25], by virtue of
which they display a variety of unique behaviors, including
propagation invariance [26–31], tunable group velocities in
absence of dispersion [32–34], self-healing [35], and free-space
acceleration/deceleration [36–39], among many other pos-
sibilities [40–42]. Rather than propagation-invariant ST wave
packets, observing the temporal Talbot effect requires utilizing
their counterparts exhibiting GVD in free space [17]. Because
the angular dispersion underpinning ST wave packets is non-
differentiable [43], unlike conventional angular dispersion
associated with tilted pulse fronts (TPFs) that is differentiable
[24,25], ST wave packets can experience arbitrary GVD in free
space [17] whereas TPFs can experience only anomalous GVD
[24,25,44]. After introducing normal or anomalous GVD of
large magnitude, periodically sampling the temporal spectrum
of the ST wave packet produces the temporal Talbot effect with

Fig. 1. (a) Temporal Talbot effect for a periodic pulse train man-
ifested in axial revivals along a dispersive optical fiber. The plots
are the intensity I (z; τ) along z; zT is the temporal Talbot length.
(b) Temporal Talbot effect realized in free space via dispersive ST wave
packets. Schematic of the setup: G, diffraction grating; Lc, cylindrical
lens; SLM, spatial light modulator. The panels display the spatiotem-
poral intensity I (x , z; τ) at different z, and the white curves are the
on-axis profiles I (0, z; τ), which are identical to I (z; τ) in (a).
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zT on the order of a few centimeters (≈ 2 cm here). Crucially,
because the spatial and temporal degrees of freedom are coupled,
the initial (non-periodic) spatial profile is repeated at the tempo-
ral Talbot planes, thereby facilitating unambiguous observation
of on-axis temporal revivals in free space for the first time.

We start by describing propagation-invariant ST wave
packets in which each spatial frequency kx is associated with a
single temporal frequency ω to ensure that the axial wavenum-
ber kz is related linearly to ω, �= (kz − ko)c tan θ ; here
�=ω−ωo is the temporal frequency relative to a fixed fre-
quency ωo, ko =

ωo
c is the corresponding wavenumber, c is

the speed of light in vacuum, x and z are the transverse and
longitudinal coordinates, respectively, the field is held uni-
form along y for simplicity, and we refer to θ as the spectral
tilt angle. Geometrically, this construction is equivalent to
restricting the spatiotemporal spectrum on the surface of the
light-cone k2

x + k2
z = (

ω
c )

2 to its intersection with a plane that
is parallel to the kx axis and is tilted by an angle θ with respect
to the kz axis, such that its projection onto the (kz,

ω
c ) plane

is the straight line kz = ko +
�
c cot θ . Such a ST wave packet

is propagation-invariant ψ(x , z; t)=ψ(x , 0; t − z/ṽ),
where ψ(x , z; t) is the spatiotemporal envelope of the field
E (x , z; t)= e i(koz−ωot)ψ(x , z; t), and ṽ = c tan θ is the group
velocity [26]. By replacing the plane with a planar curved surface
that is also parallel to the kx axis but whose projection onto the
(kz,

ω
c ) plane is the curve kz = ko +�/ṽ + k2�

2/2, then the
envelope takes the following form:

ψ(x , z; t)=
∫

d�ψ̃(�)e ikx (�)x e−i�(t−z/ṽ)e ik2�
2z/2. (1)

The on-axis envelope ψ(0, z; t) takes the form of a plane wave
pulse undergoing GVD (with GVD parameter k2) along z,
albeit in absence of a dispersive medium.

We introduce a periodic pulse train structure into the field by
discretizing the temporal spectrum along ω at multiples of 2π

T ,
�→�m =m 2π

T for integer m, so that the on-axis envelope is

ψ(0, z; t)=
∑

m

ψ̃me−i2πm(t−z/ṽ)/Te i2π sgn(k2)m2z/zT , (2)

where sgn(k2)=±1 is the sign of k2, ψ̃m = ψ̃(�m) and
zT = T2/π |k2|. The tight association between temporal

and spatial frequencies entails simultaneously discretiz-
ing the spatial spectrum along kx . However, because ω

and kx are not linearly related, kx is, therefore, not sampled
periodically, and the transverse spatial profile at z= 0 is,
thus, not periodic. The initial envelope is periodic in time
ψ(0, 0; t + `T)=ψ(0, 0; t) and is axially revived at the
Talbot planes ψ(0, `zT; t)=ψ(0, 0; t − `z/ṽ) in a time
frame traveling at ṽ.

We prepare the ST field using the 2D pulse synthesizer
developed in [26,32–34] and shown schematically in Fig. 1(b).
This arrangement implements a two-step spatiotemporal
spectral synthesis strategy capable of producing arbitrary, non-
differentiable angular dispersion [17,45,46]. Plane wave pulses
(pulse width∼100 fs at a central wavelength∼800 nm) from a
mode-locked Ti:sapphire laser (Tsunami; Spectra Physics) are
directed to a diffraction grating that spreads the pulse spectrum
in space, whereupon the first diffraction order is collimated with
a cylindrical lens before impinging on a reflective, phase-only
spatial light modulator (SLM). The SLM imparts a 2D phase
distribution to the spectrally resolved wavefront that assigns to
each wavelength λ a spatial frequency kx (λ) to guarantee that
kz(�, kx )= ko +�/ṽ + k2�

2/2, for given ṽ and k2. The
retro-reflected field returns to the grating whereupon the ST
wave packets are reconstituted with an on-axis pulse width of
≈ 2 ps. We measure the spatiotemporal spectrum via a combi-
nation of a grating and a lens to carry out temporal and spatial
Fourier transforms, and we obtain the spatiotemporal inten-
sity profile by interfering the ST field with a short plane wave
reference pulse from the Ti:sapphire laser [32,34].

We plot in Fig. 2 the measured spatiotemporal spectra for
dispersive ST wave packets. In Fig. 2(a), we plot the spectral
projections onto the (kx , λ) and (kz, λ) planes for normal
GVD whereupon the spectral projection onto the (kx , λ) plane
is O-shaped. The GVD parameter here is k2 = 106 fs2/mm,
which is significantly larger than ZnSe k2 ≈ 103 fs2/mm (at
λ= 800 nm) and Bragg gratings (k2 ≈ 105 fs2/mm). Once
the temporal spectrum is discretized [Fig. 2(b)] to produce
a period T = 8 ps, an on-axis (x = 0) periodic pulse train
structure emerges with a predicted temporal Talbot length of
zT ≈ 20 mm because of the rapidly dispersing wave packet.

Fig. 2. First row shows continuous and discretized spectral projections onto the (kx , λ) and (kz, λ) planes, |ψ̃(kx , λ)|
2 and |ψ̃(kz, λ)|

2, respec-
tively, for dispersive ST wave packets. The second row shows the spatiotemporal intensity profiles at z= 0 and z= 3 mm for each wave packet. The
dotted vertical line in the spectral projection onto the (kz, λ) plane corresponds to a GVD-free ST wave packet. (a) Dispersive ST wave packet having
θ= 50◦ and normal k2= 106 fs2/mm. (b) Same as (a) after discretizing the spectrum to produce a pulse train of period T = 8 ps. (c), (d) Same as (a),
(b), except for θ= 90◦ and anomalous GVD k2 =−106 fs2/mm.
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Fig. 3. Demonstration of the temporal Talbot effect in free space
employing the dispersive ST wave packet experiencing normal
dispersion in free space from Fig. 2(b).

We plot in Fig. 2(c) the measured spatiotemporal spectral pro-
jections onto the (kx , λ) and (kz, λ) planes after introducing
anomalous GVD equal in magnitude but opposite in sign to
that in Fig. 2(a). We plot in Fig. 2(d) the corresponding profiles
after spectral discretization with T = 8 ps.

Despite the clear distinction between the profiles for nor-
mally dispersive ST fields with continuous and discretized
spectra [Figs. 2(a), 2(b)] and their anomalously dispersive
counterparts [Figs. 2(c), 2(d)], the on-axis intensity in both are
nevertheless similar [Eq. (1)] with both exhibiting axial revivals
of the initial periodic temporal profile. The measurement results
for axial propagation of the dispersive ST wave packets alongside
theoretical predictions are presented in Fig. 3 for normal GVD
corresponding to Fig. 2(b), and in Fig. 4 for anomalous GVD
corresponding to Fig. 2(d), both with T = 8 ps. We measure the
temporally resolved intensity at the axial planes z= 0, 0.1zT,
0.25zT, 0.35zT, 0.5zT, and zT. There is excellent agreement
between the calculated (first column) and measured (second
column) intensity profiles. The on-axis temporal profiles (third
column) reveal several critical features. First, the initial period
profile [Figs. 3(a) and 4(a)] is retrieved at the Talbot planes
z=mzT [Figs. 3(f ) and 4(f )]. Second, the periodic profile is
reconstructed at the Talbot half-planes z= (m + 1

2 )zT but
with a temporal displacement by T/2 with respect to z=mzT

[Figs. 3(e) and 4(e)]. Third, at z= 0.25zT, a rate doubling is
observed, i.e., a periodic profile is observed but with period

Fig. 4. Demonstration of the temporal Talbot effect in free space
employing the dispersive ST wave packet experiencing anomalous
dispersion in free space from Fig. 2(d).

T/2 rather than T [Figs. 3(c) and 4(c)]. We repeat the measure-
ments for different values of the GVD parameter k2 and obtain
the temporal Talbot length zT. The data plotted in Fig. 5(a)
show excellent agreement with the theoretical expectation of
zT =

T2

π |k2|
with T = 8 ps.

We recently reported a phenomenon we denoted the “veiled”
Talbot effect resulting from periodically sampling the spatial
spectrum along kx for a propagation-invariant ST wave packet
[47]. The conventional spatial Talbot effect was observed in
time-resolved measurements as a consequence of time diffrac-
tion [27,48–50], but no temporal dynamics are observed in
absence of GVD. The time-averaged intensity (or energy) is
diffraction-free along z with a period L/2 rather than L . In
the work reported here, the transverse profile is not periodic,
and yet the time-averaged intensity remains diffraction-free, as
shown in Fig. 5(b) for normal and anomalous GVD, despite the
underlying axial dynamics (Figs. 3 and 4).

We have also reported on a ST Talbot effect based on the
unique dispersive ST wave packet denoted a “V-wave” whose
diffraction and dispersion lengths are intrinsically equal [51].
Because kx and ω are linearly related in a V-wave, kx and ω can
be simultaneously sampled periodically to guarantee equal
spatial and temporal Talbot lengths. However, this is a restric-
tive condition that admits of this unique solution. The Talbot
effect we present here is purely temporal. Crucially, V-waves
are endowed with differentiable angular dispersion, so they are
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Fig. 5. (a) Measured temporal Talbot length zT while varying
the GVD parameter in the normal regime. The dotted curve is
zT = T2/(π |k2|). (b) Time-averaged intensity I (x , z) for both normal
and anomalous GVD, showing axial invariance despite the underlying
temporal evolution (Fig. 3 and Fig. 4).

amenable to the conventional perturbative theory [44]; they,
therefore, can inculcate only anomalous GVD. In contrast,
non-differentiable angular dispersion introduced here [43]
produces either normal or anomalous GVD [17].

In conclusion, we have observed for the first time the tem-
poral Talbot effect with a freely propagating field rather than
a confined mode in a single-mode fiber. This demonstration
made use of dispersive ST wave packets undergirded by non-
differentiable angular dispersion that allows us to induce in
free space normal or anomalous GVD of extremely large magni-
tudes, thus reducing the temporal Talbot length to zT ∼ 20 mm.
Moreover, the initial non-periodic spatial profile is simultane-
ously revived at the temporal Talbot planes, thereby allowing for
the unambiguous observation of this effect.
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