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Abstract

We study the spreading of the rms spatial and angular characteristics of partially coherent beams in turbulent media.

The angular broadening of a beam is shown to be diffusion-like. The dynamics of the rms width of the beam is found to

be determined by the interplay of free-space diffraction and turbulent diffusion. Our results indicate the conditions

under which partially coherent beams are less sensitive to distortions caused by the atmospheric turbulence than are

fully coherent beams. � 2002 Published by Elsevier Science B.V.

1. Introduction

The propagation of light in turbulent media in
the multiple scattering regime has been of consid-
erable interest in connection with many funda-
mental [1] as well as applied topics such as, for
example, weaponry, optical imaging, and satellite
communications [2].
To date, several alternative methods for treat-

ing the propagation of beams in turbulent media
have been proposed [2–4]. It was shown in [5] that
as far as the second-order field correlations are
concerned, all of these approaches are equivalent.
In order to successfully apply any of these methods
to realistic situations, one has to assume either

Gaussian statistics of the refractive index fluctua-
tions or the lognormal statistics of the optical field.
However, the experiments over long propagation
paths have indicated that lognormal model is in-
appropriate in the strong fluctuation regime [6].
Therefore, an altogether different approach may
be necessary to study how the characteristics of
beams are affected by strong turbulence over suf-
ficiently large propagation distances. Another
open question is the influence of the state of co-
herence of the incident beam on its subsequent
propagation in turbulent media. Preliminary nu-
merical results [7] suggest that partially coherent
beams might be less affected by the atmospheric
turbulence than are their fully coherent counter-
parts.
In this paper, we develop a theory that makes it

possible to calculate the spatial and angular
spreads of partially coherent beams propagating in
a turbulent medium under all conditions of tur-
bulence. Our approach employs a formal analogy
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between quantum mechanics in Hilbert space and
paraxial wave optics. The advantages of such an
approach are threefold. First of all, it clarifies the
diffusive nature of the beam spreading in turbulent
media, and it helps to identify the key parameters
determining the behavior of the beam: the char-
acteristic length associated with the spreading of
the beam due to diffraction and the turbulent dif-
fusion length. Secondly, our approach does not
require any assumptions regarding the type of
statistics of the refractive index fluctuations. Fi-
nally, the analysis of our analytic expressions for
the rms width and the angular spread of the beam
enables us to find conditions under which the
distorting influence of a turbulent medium is less
pronounced for partially coherent beams than it is
for fully coherent ones.

2. Hilbert space theory of beam propagation in

turbulent media

We begin by recalling that as long as back-
scattering and depolarization effects are negligible,
the optical field Uðq; zÞ exp()ixt) of a paraxial
beam, propagating in the z-direction into the half-
space z > 0, obeys the scalar parabolic equation [2,
Section 5.7]:

2ikozUðq; zÞ þ r2?Uðq; zÞ þ 2k2n1ðq; zÞUðq; zÞ ¼ 0;
ð1Þ

where k ¼ x=c, n1ðq; zÞ is the fluctuation of the
refractive index, and r? is the gradient in a plane
transverse to the direction of propagation of the
beam. The first- and second-order statistical
properties of the fluctuation of the refractive index
n1ðq; zÞ are given by the expressions [3, Section 65]

hn1ðq; zÞin ¼ 0; ð2aÞ
and

hn1ðq1; z1Þn1ðq2; z2Þin ¼ dðz1 	 z2ÞBnðq1 	 q2Þ;
ð2bÞ

where h
 
 
in denote the average over the ensemble
of realizations of the refractive index fluctuations
n1ðq; zÞ, and Eq. (2b) implies Markovian character
of the refractive index fluctuations in the longitu-
dinal direction, an approximation whose validity

improves with the propagation distance [3, Section
65]. Further, assuming that n1ðq; zÞ is statistically
homogeneous, we may introduce the spectral
density /nðk?Þ of the refractive index fluctuations
in a transverse plane. As a consequence of spatial
analogue of the Wiener–Khintchine theorem [8,
Section 2.4], the spectral density /nðk?Þ is related
to the second-order correlation function Bn of
n1ðq; zÞ by a Fourier transform:

Bnðq1 	 q2Þ ¼
Z
d2k?eik?ðq1	q2Þ/nðk?Þ: ð3Þ

We will now employ a formal analogy which
exists between paraxial wave optics in free space
and quantum mechanics [9–11] to formulate the
problem of beam propagation in turbulent media
in the language of quantum mechanics in Hilbert
space. To this end, we consider the optical field
Uðq; zÞ to be the product of the ‘‘bra’’ vector hqj
and the ‘‘ket’’ vector of the state jUðzÞi of a beam
at the distance z:

Uðq; zÞ ¼ hqjUðzÞi: ð4Þ
Next we introduce the statistical operator of the
incident beam by the expressionbWW ð0Þ ¼ jUð0ÞihUð0Þj; ð5Þ
where jUð0Þi is a ‘‘ket’’ vector of the state of the
beam at z ¼ 0, and the overbar denotes the aver-
age over the ensemble of statistical realizations of
the incident beams. A matrix element of the sta-
tistical operator in coordinate representation is the
cross-spectral density W ðq1; q2; 0Þ of the beam at a
pair of points q1 and q2 in the plane z ¼ 0, i.e.,
W ðq1; q2; 0Þ � hU 
ðq1; 0ÞUðq2; 0Þi

¼ hq1jW jq2i: ð6Þ

The phase-space dynamics of the beam is
characterized by the radius and by the angular
spread of the beam. To describe the latter, one can
represent the beam as a superposition of plane
waves. A plane wave with the transverse wave
vector k? propagates in a direction which makes
the angle h with the z-axis given by

tan h ¼ jk?j=kz: ð7Þ
For a paraxial beam, one has tan h � sin h � h,
and it follows from definition (7) that h ’ jk?j=k.
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Let us introduce the Hilbert-space radius operator
q̂q and the angle operator ĥh. The latter is defined by
the expression

ĥh � k̂k?=k: ð8Þ

In coordinate representation, the angle operator is
given by the expression

ĥh ¼ 	ði=kÞr?: ð9Þ
It follows at once from Eq. (5) that the expectation
value of any function f ðq̂q; ĥhÞ in the transverse
plane z ¼ 0 can be evaluated according to the rule

f ðq̂q; ĥhÞ ¼ Tr½f ðq̂q; ĥhÞW �=Tr½W �: ð10Þ
It can be readily verified that Eq. (10) reduces, in
particular cases, to the usual definitions of aver-
ages over distributions of the optical intensity in
the plane z ¼ 0 and the radiant intensity in coor-
dinate and momentum representations, respec-
tively. Consider, for example, the rms width of the
incident beam. On converting Eq. (10) to coordi-
nate representation, one finds that

q̂q2 ¼
R
d2qq2W ðq; q; 0ÞR
d2qW ðq; q; 0Þ

; ð11Þ

where W ðq; q; 0Þ � Iðq; 0Þ is the intensity of the
incident beam in the plane z ¼ 0. Similarly, using
momentum representation, we obtain for the
mean-square angular spread of the incident beam
the expression

ĥh2 ¼
R
d2hh2 eWW ð	kh; kh; 0ÞR
d2h eWW ð	kh; kh; 0Þ

: ð12Þ

Here eWW ðf1; f2; 0Þ is a four-dimensional Fourier
transform of the cross-spectral density of the in-
cident beam, defined as

eWW ðf1; f2; 0Þ ¼
Z
d2q1
ð2pÞ2

Z
d2q2
ð2pÞ2

W ðq1;q2; 0Þ

� eiðf1
q1þf2
q2Þ: ð13Þ

In obtaining Eq. (12), we have made use of the
connection between coordinate and momentum
representations viz.

hhjqi ¼ 1

ð2pkÞ2
expðikh 
 qÞ: ð14Þ

Eqs. (11) and (12) provide a connection between
the radius q̂q and the angle ĥh operators on one hand
and the rms spatial and angular spreads of the
beam on the other.
In Hilbert space, Eq. (1) takes the form of the

Schr€oodinger equation

ikozjUðzÞi ¼ ĤH jUðzÞi; ð15aÞ
where the Hamiltonian ĤH is given by the expres-
sion

ĤH ¼ k2½ĥh2=2	 n1ðq̂q; zÞ�: ð15bÞ
Further, the radius and angle operators form a
conjugate pair with the commutator:

½q̂q; ĥh� ¼ i=k: ð16Þ
Eq. (16) expresses the well-known diffraction limit
of the beam localization in free space. It should be
mentioned that as k � 2p=k ! 0 the commutator
vanishes, which corresponds to the limit of geo-
metric optics.

3. The rms spatial and angular spreads of a beam

Eqs. (15a) and (15b) specify the state of the
beam in any transverse plane z ¼ const > 0 given
the state of the incident beam in the plane z ¼ 0.
Alternatively, one can study the beam dynamics in
the Heisenberg picture, where, as is well-known
[12, Chapter 2], one follows the evolution of Hei-
senberg operators, while the state of the system
remains unchanged. The evolution of the rms
spatial and angular spreads of the beam with the
propagation distance is more conveniently de-
scribed in the Heisenberg picture. The equations of
motion for the operators q̂q and ĥh are

ikozq̂q ¼ ½q̂q; ĤH �; ð17aÞ

ikozĥh ¼ ½ĥh; ĤH �: ð17bÞ
Using Eqs. (15b) and (16), as well as the relation,

½ĥh; n1ðq̂q; zÞ� ¼ 	ði=kÞr?n1ðq̂q; zÞ; ð18Þ
one can formally integrate Eqs. (17a) and (17b)
with the result that

q̂qðzÞ ¼ q̂qð0Þ þ
Z z

0

dnĥhðnÞ; ð19aÞ
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ĥhðzÞ ¼ ĥhð0Þ þ
Z z

0

dgrqn1½q̂qðgÞ; g�: ð19bÞ

It follows from Eq. (2a) that turbulence does not
affect the dynamics of the first-order moments of q̂q
and ĥh. We assume, for simplicity, that the incident
beam is circularly symmetric in the transverse
plane, implying that hĥhð0Þi ¼ 0 and hq̂qð0Þi ¼ 0,
where the angle brackets denote the combined
average over the ensembles of the incident beams
and of the atmospheric fluctuations. One can then
infer from Eqs. (2a) and (19a), (19b) that the first-
order moments of the radius and the angle vanish
in any plane z ¼ const in the half-space z > 0. The
calculation of the second-order moments leads to
the expressions

hĥh2ðzÞi ¼ ĥh2ð0Þ þ I1ðzÞ; ð20aÞ

hq̂q2ðzÞi ¼ q̂q2ð0Þ þ fq̂qð0Þ; ĥhð0Þgzþ ĥh2ð0Þz2 þ I2ðzÞ:
ð20bÞ

Here {,} stands for the anticommutator of a pair
of operators, and

I1ðzÞ ¼
Z z

0

dg
Z z

0

dg0rqrq0 hn1½~qqðgÞ; g�n1½~qqðg0Þ; g0�in;

ð21Þ

I2ðzÞ ¼
Z z

0

dn
Z z

0

dn0
Z n

0

dg
Z n0

0

dg0rqrq0

� hn1½~qqðgÞ; g�n1½~qqðg0Þ; g0�in: ð22Þ

In deriving the expressions for I1ðzÞ and I2ðzÞ in
Eqs. (20a) and (20b) we have made a semiclassical
approximation [12, Section 2.4] by replacing the
operators q̂q by the c – numbers ~qq on the right-hand
sides of Eqs. (21) and (22). This assumption
amounts to neglecting contributions of the order
of the commutator of the radius and angle oper-
ators. It follows at once from Eq. (16) that this is
equivalent to using the geometric optics approxi-
mation, k ! 0. There are two reasons that justify
the use of such an approximation. First, the op-
erator nature of q̂qðzÞ results in the noncommut-
ativity of the radius operators in different
transverse planes z and z0, ½q̂qðzÞ; q̂qðz0Þ� 6¼ 0. How-
ever, due to the Markovian character of the re-
fractive index fluctuations in the longitudinal

direction, there is no contribution to the correla-
tion function of n1ðq; zÞ from points in different
transverse planes z and z0. Secondly, the refractive
index fluctuations n1ðq; zÞ vary slowly at the
spatial scales of the order of the wavelength.
Consequently, jn1ðq̂q; zÞ	 n1ð~qq; zÞj � jn1jk=l0 � jn1j,
where the inner scale of the refractive index fluc-
tuations l0 is typically of the order l0 � 1 cm,
whereas k � 5� 10	5 cm.
The averaging in Eqs. (21) and (22) can then be

performed with the help of Eq. (2b), and after
straightforward integrations, one obtains the ex-
pressions

I1ðzÞ ¼ 	zr2qBnð0Þ; ð23aÞ

I2ðzÞ ¼ ð	z3=2Þr2qBnð0Þ: ð23bÞ

Using the definition (3) of the spectral density
/nðk?Þ of the refractive index fluctuations, it can
be readily demonstrated that

	r2qBnð0Þ ¼ 2p
Z
d2k?k2?/nðk?Þ: ð24Þ

On substituting from Eqs. (23a) and (23b) and
taking into account Eq. (24), we obtain for the rms
angular and spatial spreads of the beam the ex-
pressions

hĥh2ðzÞi ¼ ĥh20 þ 2Dtz; ð25aÞ
and

hq̂q2ðzÞi ¼ q̂q20 þ fq̂q0; ĥh0gzþ ĥh20z
2 þDtz3; ð25bÞ

where h20 � hð0Þ2, and q20 � qð0Þ2. Eq. (25a) indi-
cates that the angular spreading of the beam is of a
diffusive type with the diffusion coefficient Dt,
which is given by the expression

Dt � 2p2
Z 1

0

dk?k3?/nðk?Þ: ð26Þ

Here it was assumed, for simplicity, that the ran-
dom medium is statistically isotropic.
It follows at once from Eq. (10) that, in com-

plete analogy with quantum mechanics [8, Section
11.8.1], the expectation of the Weyl-ordered
product of operators fq̂q0; ĥh0g can be expressed as

fq̂q0; ĥh0g ¼ 2
R
d2q

R
d2hqhWðq; hÞR

d2q
R
d2hWðq; hÞ

; ð27Þ
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where Wðq; hÞ is the Wigner function, defined by
the expression

WðR; k?Þ ¼
Z
d2qhR	 q=2jW jRþ q=2ie	ik?q:

ð28Þ
It should be noted that Eq. (25b) has the same
structure as previously reported results in [13] and
[14] for the cases of fully coherent and of partially
coherent incident beams, respectively. There is
however a difference in the numerical value of the
diffusion coefficient Dt. This difference may be
attributed to approximations made in [13,14]
regarding the statistics of the medium fluctua-
tions.
The diffusion nature of angular spreading of the

beam in the turbulent atmosphere, which is ex-
pressed by Eq. (25a), can be also understood
within the framework of the random walk model
[15]. In this model, a beam is represented as a
collection of particles which are sometimes inap-
propriately referred to as photons. They are scat-
tered from the spatial fluctuations of the medium.
In each scattering event, the angle that the direc-
tion of propagation of such a particle makes with
the mean direction of propagation of the beam is
changed by the amount Dh. In the turbulent at-
mosphere, the probability density of the angular
scattering of the particles is highly peaked in the
forward direction and consequently Dh � 1. Since
the scattering events are independent, the overall
rms angular spread of the beam is of the order of
nDh, where n is the number of scattering events.
The latter quantity can be estimated as n � z=l0,
where z is a propagation distance and l0 is a mean
free path of the particle. It follows from these
heuristic arguments that the rms angular spread of
the beam is proportional to the propagation dis-
tance z which is a signature of the diffusive be-
havior.

4. Beam characterization in turbulent media

It readily follows from Eqs. (25a) and (25b) that
at long propagation distances, the turbulence takes
its toll on any incident beam, leading to an addi-
tional significant broadening of the rms charac-

teristics of the beam. However, so long as the
propagation distance is sufficiently short, it is
possible to control the phase-space properties of
beams propagating in the turbulent atmosphere by
a choice of their initial state of spatial coherence.
The corresponding optimization problem depends
on a particular application. For instance, in some
applications it is required to have a beam with the
smallest product of the rms width and the angular
spread, i.e, the smallest ‘‘M2 quality product’’ [16],
in a given transverse plane z. It follows from Eqs.
(25a) and (25b) that to achieve this goal, one has to
launch an incident beam with the minimum M2

product as well. It is known [11] that the minimum
of M2 is attained by a fully spatially coherent
Gaussian beam. On the other hand, for applica-
tions such as targeting and satellite communica-
tions, it may be desirable to minimize the
spreading due to diffraction and turbulence of the
initial ‘‘targeting’’ parameters of a beam. For in-
stance, one may wish to use beams whose angular
spreads relative to their initial values are suffi-
ciently small.
The analysis of Eqs. (25a) and (25b) indicates

that there are two characteristic spatial scales
which determine the influence of diffraction and
turbulence. A typical diffraction scale, the well-
known Rayleigh range [17,18], is defined as the
distance at which the mean-square radius of the
incident beam increases by a factor of two due to
diffraction. For a quasi-monochromatic beam, it is
given by the expression

zR ¼ q0=h0: ð29Þ
Here we have assumed, for simplicity, that the
Wigner function is an even function of its argu-
ments so that the term proportional to the anti-
commutator of the angle and the radius operators
vanishes identically. The other length scale, a
typical diffusion length Dt, is defined as the dis-
tance at which the mean-square angular spread is
twice as large as its initial value:

zD ¼ h20=2Dt: ð30Þ

Using the definitions (29) and (30), one can rewrite
the equations for the rms width and the relative
rms angular spread of the beam, Eqs. (25a) and
(25b), in the dimensionless form

S.A. Ponomarenko et al. / Optics Communications 208 (2002) 1–8 5



DhðzÞ
h0

¼
ffiffiffiffiffi
z
zD

r
; ð31aÞ

qðzÞ
q0

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2

z2R
þ z3

2zDz2R
:

s
ð31bÞ

Here we have introduced the notations q2ðzÞ �
hq̂q2ðzÞi, and h2ðzÞ � hĥh2ðzÞi as well as DhðzÞ �
ðh2ðzÞ 	 h20Þ

1=2
. It follows from Eq. (31a) that the

longer the diffusion length, the shorter the relative
rms angular spread of the beam at a given distance
z. Since the diffusion length increases with the
initial angular spread, one can minimize the rela-
tive rms angular spread by maximizing the initial
angular spread of the beam. On the other hand, it
is seen from Eq. (29) that a larger initial angular
spread of the beam results in a shorter Rayleigh
range. The optimal initial angular spread of the
beam therefore corresponds to the case when the
diffusion length is of the same order of magnitude
as the Rayleigh range. It can be inferred from Eqs.
(31a) and (31b) that under these circumstances,
both the rms radius and the relative rms angular
spread do not significantly increase after the beam
has passed a distance of the order of z � zD � zR.
Consequently, one can still use such beams in
targeting or communications applications at dis-
tances of this order of magnitude.
Let us estimate typical values of the Rayleigh

range and the diffusion length of incident fully
spatially coherent beams. To this end, we con-
sider the Tatarskii model for the spectral density
of the refractive index fluctuations [2, Section
3.3.2]

/nðkÞ ¼ 0:033C2nk	11=3e	k2l2
0 ; ð32Þ

where Cn is a so-called structure constant, and l0 is
the inner scale of the turbulence. Under typical
conditions of turbulence, Cn � 0:3� 10	14 cm	2=3,
and l0 � 1 cm. On substituting from Eq. (32) into
Eq. (26) and on evaluating the integral, one ob-
tains the estimate Dt ’ 0:5� 10	14 cm	1. The an-
gular spread of an incident fully coherent beam of
the rms width q0 is of the order of

h0 ’ k=q0: ð33Þ

On substituting this expression for h0 into Eqs.
(29) and (30), we arrive at the expression for the

rms width of the beam for which the Rayleigh
range is approximately equal to the diffusion
length,

q0 ’ ðk3=2DtÞ1=4; ð34Þ
which, at optical wavelengths k � 5� 10	5 cm
leads to q0 � 2 cm. The Rayleigh range corre-
sponding to this rms width is zR � 1 km.
Let us now consider a quasi-homogeneous

source [8, Section 5.2.2] generating a beam whose
spectral coherence length qc is much smaller
than the size of the source, R0, i.e., qc � R0. The
initial angular spread of such a beam can be esti-
mated as

h0 ’ k=qc: ð35Þ
It follows from Eqs. (29), (30) and (35) that the
condition zR ’ zD is satisfied for the partially co-
herent beam provided that

qc ’
k3

2DtR0

� 	1=3
: ð36Þ

Assuming R0 � 102 cm, one obtains from Eq. (36)
that qc � 0:5 cm. It follows that the Rayleigh
range as well as the diffusion length for such a
partially coherent beam is zR ’ zD � 10 km. One
can infer from these numerical examples that
beams generated by quasi-homogeneous sources
might indeed propagate over longer distances in
the atmosphere without significant spreading than
do fully coherent beams.

5. Numerical examples

The analysis and conclusions of the previous
section apply to all partially coherent beams re-
gardless of a particular functional form of their
cross-spectral density. We will now illustrate these
predictions by an example. Consider a Gaussian–
Schell model source producing a partially coherent
beam with the cross-spectral density which is given
by the expression [8, Section 5.3.2]

W ðq1;q2;0Þ / exp
�
	q21þq22
4r2I

	
exp

"
	ðq1	q2Þ

2

2r2c

#
;

ð37Þ
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where rI and rc are the rms width and the spectral
coherence length in the source plane, respectively.
On substituting from Eq. (37) into Eq. (12) and

on performing straightforward integrations, one
obtains for the initial angular spread h0 the ex-
pression

h0 ¼
ffiffiffi
2

p
=kreff ; ð38Þ

where

1

r2eff
¼ 1

r2c
þ 1

4r2I
: ð39Þ

It follows from Eq. (31a) and (31b) that in the
absence of turbulence, the rms angular spread of
the beam would be an integral of motion. Conse-
quently, the influence of turbulence is most clearly
revealed by studying angular spreading of the
beam. On substituting from Eqs. (38) and (39) into
Eqs. (25a) and (31a), we determine the rms angular
spread as well as the rms angular spread relative to
its value at z ¼ 0. The results are displayed in Figs.
1 and 2. In Fig. 1. the absolute value of the rms
angular spread is shown as a function of the
propagation distance z for incident beams with the
same value of rI, but with different values of
the spectral coherence length rc. It is seen from the
figure that the angular spread slowly increases with
decreasing rc. On the other hand, Fig. 2 indicates a
pronounced decrease of the relative rms angular
spread of the beam with decrease of the coherence
length of the incident beam.

6. Conclusions

We have derived analytic expressions for the rms
width and the rms angular spread of partially co-
herent beams propagating in turbulent media. The
contribution to the angular spreading caused by
turbulence has been demonstrated to be of a diffu-
sion type. The phase-space dynamics of any beam
has been shown to depend on the relation between
the Rayleigh range and the diffusion length which
characterize the influence of diffraction and turbu-
lence, respectively. We have also shown that in or-
der to minimize the broadening of the beam, the
state of spatial coherence of the incident beam
should be reduced. In particular, if a fully coherent
source of the size q0 is converted into a quasi-
homogeneous source of the effective size R0 and
with the spectral coherence length qc such that
qc6 q0 � R0, a beam generated by such a quasi-
homogeneous source can propagate over a consid-
erably longer distance without significant spreading
than can a beam which is generated by the fully
coherent source of the effective. In practice, such
quasi-homogeneous sources can be produced by
forming suitable arrays of uncorrelated sources or
by the use of a rotating diffuser, for example.
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