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ABSTRACT
We point out a link between orbital angular momentum (OAM) carrying light beams and number theory. The established link makes it
possible to formulate and implement a simple and ultrafast protocol for prime number factorization by employing OAM endowed beams
that are modulated by a prime number sieve. We are able to differentiate factors from non-factors of a number by simply measuring
the on-axis intensity of light in the rear focal plane of a thin lens focusing on a source beam. The proposed protocol solely relies on the
periodicity of the OAM phase distribution, and hence, it is applicable to fully as well as partially coherent fields of any frequency and
physical nature—from optical or x-ray to matter waves—endowed with OAM. Our experimental results are in excellent agreement with
our theory. We anticipate that our protocol will trigger new developments in optical cryptography and information processing with OAM
beams.
© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0192223

The orbital angular momentum (OAM) beams have attracted
enormous interest within the optical community since the pioneer-
ing work of Allen.1,2 Ever since their inception, the OAM beams
have found diverse applications that take advantage of their phase
singularities and mode orthogonality, among other unique prop-
erties. He et al. first observed the transfer of the optical OAM
to a microparticle, causing particle trapping by an optical vortex
around a phase singularity.3 Larocque et al. proposed the concept
of optical framed topology, whereby the structures formed by the
evolution of the phase singularity in space are employed as the
information carriers to implement potent, high-security informa-
tion encoding.4,5 Furthermore, optical vortices can be utilized for
mode division multiplexing to realize ultra-high capacity optical

communication protocols.6,7 Fang et al. advanced OAM hologra-
phy as a promising technique for high-security, high-capacity optical
encryption.8–10

On the other hand, the prime number decomposition of an
integer, which is a cornerstone of number theory, has piqued the
curiosity of the physics community due to recently discovered
intriguing connections between number theory, condensed matter
physics,11 and photonics,12 respectively. Factorizing a large inte-
ger into primes is a tricky problem, although. On the flip side,
the complexity of the task can ensure high security for number-
decomposition based information encoding, all-optical machine
learning, and other number factorization related applications.5,13–15

To date, several approaches have been proposed to realize efficient
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prime number decomposition,16–25 including quantum algorithms,
quantum annealing, variational algorithms, and classical protocols
involving Gauss sums. The latter involves coherent superpositions
of optical waves,19,20 Bose–Einstein condensates,21 nuclear spins,22

cold atoms,23 or matter waves in atom interferometers.24 Interfer-
ometric approaches typically employ multiple sources to realize a
Gauss sum, whereby a single source produces a term in the sum.
Therefore, such techniques place strenuous demands on precise
phase control of multiple wave sources, which is often difficult to
implement in experiments, especially if factorizing a large num-
ber is required.24 At the same time, the factorization procedure
relying on the optical Talbot effect is hampered by light diffrac-
tion from the apertures of an optical system, which, ultimately,
sets the upper limit on the factorizable number. Indeed, Pelka
et al. were able to factor only a modest number of 27 using this
approach.19 Recently, we have advanced a number factorization
protocol employing axial correlation revivals of structured ran-
dom waves, such that no phase control was necessary at all.20 The
approach of Ref. 20 makes it possible to decompose a number as
large as a few million, but it is rather time-consuming to work
with large statistical ensembles to accurately determine the speckle
statistics.

In this work, we propose and implement a conceptually simple,
time-efficient classical optical approach to number factorization that
involves OAM carrying optical beams and a carefully engineered
prime number sieve. Our approach relies on the intrinsic period-
icity of the phase distribution of an optical OAM beam propagating
in free space.

Consider the simplest OAM carrying optical beam, a
Laguerre–Gaussian (LG) beam of zero radial mode index. The com-
plex field amplitude of the beam can be expressed in cylindrical
coordinates as26

El(r, φ) = A0(
√

2r
w0
)
∣l∣

exp(− r2

w2
0
) exp (−ilφ), (1)

where l is a topological charge of the beam vortex and w0 is a beam
width at its waist. The phase of the beam field spirals around the
beam propagation direction z, as schematically shown in Fig. 1(a).
In any transverse plane z = const, the phase is manifestly periodic
with the period φT = 2π/∣l∣, which is independent of the sign of the
topological charge. In the following, we only consider the positive
topological charge.

To perform prime number decomposition with such LG beams,
we engineer a prime number sieve composed of M Dirac pinholes
lying on a curve spiraling around the optical axis, as shown in
Fig. 1(b). The transmittance function Tp of the sieve is defined as

Tp(r, φ) = 1
M

M

∑
m=1

δ(φ − 2πm2

p
+ φ0)δ(r − rm), (2)

where M is the number of pinholes, δ is the Dirac delta function, and
φ0 denotes the initial phase. In the experiment, each Dirac pinhole is
replaced by a circle of diameter d. Furthermore, rm = r0 +m2/p ⋅ d
is an offset of the mth pinhole from the optical axis; p is a trail factor,
and m2/p determines in between which consecutive rings the mth
pinhole is located. The second delta function on the right-hand side
of Eq. (2) ensures that the pinholes falling into the areas between
different consecutive rings do not overlap.

We envision an optical system such that the OAM beam, mod-
ulated by the prime number sieve, is focused by a thin lens [see
Fig. 1(c)] onto an observation screen. We can express the beam field
in the rear focal plane of the lens as

Uf (r) = −
i

λ f ∫ d2r′El(r′, φ)Tp(r′, φ)e−ikr′ ⋅r/ f , (3)

where r = (r, θ) and r′ = (r′, φ). By substituting Eqs. (1) and (2) into
Eq. (3), we obtain

FIG. 1. Schematic illustration of the principle of prime number factorization with OAM beams. (a) The phase distribution of an OAM beam twisted as a spiral staircase during
propagation exhibits azimuthal periodicity with the period φT = 2π/l. (b) Prime number sieve examples marked with color dots. (c) Implementing prime number factorization
with OAM beams. The hue and brightness of the plots in (a) and (b) refer to the phase and intensity, respectively.
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FIG. 2. Numerical simulation of prime number factorization with the OAM beam with l = 1 × 53 (a), l = 2 × 3 × 5 × 7 (b), and l = 17 × 19 (c). The blue squares (red dots)
mark theoretical results obtained from the incomplete Gauss sum (simulation results obtained with the aid of Matlab).

Uf (r)∝
1
M

M

∑
m=1

rm(
√

2rm

w0
)
∣l∣

e−r2
m/w

2
0 e−2πiΔφp/φT

× exp [− ikrrm

f
cos(θ − 2πm2

p
+ φ0)],

(4)

up to an immaterial constant. In the approximation r0 ≫ m2/p, the
on-axis intensity reduces to

Iaxis ∝ ∣
1
M

M

∑
m=1

exp(−2πi
Δφp

φT
)∣

2

= ∣𝒢M(p, l)∣2, (5)

where Δφp = 2πm2/p. The function 𝒢M(p, l) is an incomplete Gauss
sum, defined as25

𝒢M(p, l) = 1
M

M

∑
m=1

exp (−2πim2l/p). (6)

In our protocol, the number to be factored and the trial factors are
given by the topological charge l of an OAM beam and the num-
ber p, which specifies the locations of the pinholes in the sieve. The
Gauss sum equals unity whenever Δφp are multiples of φT , such that
p is a factor of the topological charge. Otherwise, 𝒢M(p, l) oscillates
rapidly, taking on small values. In Fig. 1(b), we exhibit four prime
number sieves with p = 2, 3, 4, and 5, marked by dots of different
colors. We assume there are five pinholes, M = 5, and the number
to be factorized is l = 4. Whenever p is a factor of l, i.e., p = 2 (yellow
dots) and 4 (red dots), all pinholes are in phase. We can infer from
Eq. (5) that the result is independent of the initial phase φ0, implying
that our protocol is insensitive to the initial placement angle of the
sieve. This is a huge bonus for the experimental implementation of
our protocol. We note that we adopt a general criterion M ⩾ 0.7 4

√
l

to suppress all non-factors situated below a threshold value 1/
√

2 to
improve factor identification.25

We now present our numerical simulations of the proposed
number factorization protocol sketched in Fig. 1(c). The incident
OAM beam with the topological charge l and wavelength λ passes
through the prime number sieve and is then focused by a thin lens

of focal length f . We can evaluate the on-axis intensity numeri-
cally using Matlab.27 We chose the following numerical parameters:
λ = 532 nm, f = 400 mm, d = 0.04 mm, r0 = 6 mm, and M = 7. In
Fig. 2, we display three examples of prime number factorization with
OAM beams of variable l. We express the number l to be factorized
as a product of prime factors, exhibited on top of each panel in Fig. 2.
All results demonstrate that as long as p is a factor of l, the (normal-
ized) on-axis intensity equals unity for good accuracy; otherwise, it
takes on small values below the threshold value 1/

√
2 labeled by the

dashed-dotted line. Our theoretical results (blue squares, attained by
the incomplete Gauss sum) and simulation results (red dots) are in
good agreement, validating the feasibility of our protocol.

We proceed to the experimental implementation of the pro-
tocol. A linearly polarized beam of the carrier wavelength 532 nm,
emitted from a DPSS laser, passes through a half-wave plate (HP)
and a beam expander (BE). We rotate HP to guarantee the horizontal

FIG. 3. Experimental setup for prime number factorization with OAM beams.
DPSS: diode-pumped solid-state laser, HP: half-wave plate, BE: beam expander,
SLM: reflective phase-only liquid crystal spatial light modulator, and DMD: digi-
tal micro-mirror device. (a) Computer-generated hologram of a Laguerre–Gauss
beam with topological charge l = 30 and w0 = 0.8 mm. (b) Complex amplitude of
an experimentally reproduced Laguerre–Gaussian beam at the front surface of the
DMD. The image size is 9.6 × 9.6 mm2, and hue and brightness refer to the phase
and intensity, respectively. (c) An example mask of prime number sieve Tp with
M = 7, d = 0.15 mm, and r0 = 3 mm.
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polarization of an output beam, as it must align with the reflec-
tion angle of a phase-only spatial light modulator (SLM) (Holoeye
GAEA-2, 3840 × 2160 pixels with a 3.74 ×3.74 μm2 pixel pitch).
To generate a high-quality OAM beam [described by Eq. (1)], we
employ the complex-amplitude encoding scheme26 to customize a
computer-generated hologram to be loaded onto the SLM [see an
example for l = 30 in Fig. 3(a)]. The input beam illuminates the
SLM, and the +first or −first-order diffracted beam forms our output
OAM beam. Such a beam can be selected via a modified 4 f opti-
cal system consisting of two lenses of focal length f1 = f2 = 10 cm
and an iris. We employ a generalized Arago spot method28 to obtain
the complex field distribution of the generated OAM beam, which
we illustrate in Fig. 3(b). Hue and brightness refer to the phase and
intensity of the beam, respectively. The generated OAM beam illu-
minates a Digital Micro-mirror Device (DMD) (Vialux, 1920 × 1080
pixels with a 10 ×10 μm2 pixel pitch), on which the prime number
sieve is loaded. The sieve is displayed in Fig. 3(c), and the relevant
parameters are set as M = 7, d = 0.15, mm and r0 = 3 mm. The mod-
ulated beam is focused by a thin lens (lens 3) of a focal length of f3
= 40 cm, and a camera, located in the rear focal plane of the lens,
records an intensity pattern.

We exhibit three normalized intensity patterns in Fig. 4. We
take the topological charge to be l = 30. Following Eq. (2), we design
three prime number sieves, varying the magnitude of p. We set the
other parameters as M = 7, d = 0.15 mm, and r0 = 3 mm. We find
that the on-axis normalized intensity (marked by the cross sym-
bol) is unity if p is a factor of l = 30 (see p = 5 and 10 in the
central and right panels), or not (see p = 4 in the left panel). Further-
more, we experimentally factor the numbers l = 30 and l = 53. We
present our results in Fig. 5. It can be seen in the figure that the fac-
tors and non-factors of both numbers are clearly discriminated by
the threshold value of 1/

√
2. Slight deviations of the experimental

results from the simulation results are mainly due to misalignment
between the OAM beam and prime number sieve axes, as well as
to imperfect generation of the OAM beam. Overall, our experi-
mental results agree well with our simulations, as shown in Figs. 4
and 5.

In our time-efficient number factorization protocol, l serves as
a number to be factored, so that we first produce the required OAM
beam. It is followed by the design of a set of variable trial number
sieves. It is worth noting that the transmittance function of any sieve

FIG. 4. Numerical (a) and experimental (b) results for the normalized intensity
patterns of an OAM beam modulated by prime number sieves. The topological
charge is l = 30, and the trial factor p is given by 4, 5, and 10 from left to right. The
size of each pattern is 375 ×375 μm2, and the optical axis is labeled by the cross
symbol.

FIG. 5. Experimental implementation of prime number factorization with OAM
beams. The number to be factorized is given by l = 30 (a) and l = 53 (b). The
vertical lengths of the error bars characterize the absolute value of the difference
between the experimental and simulation results.

is binary, such that light passes through the pinholes and is reflected
otherwise. Such a sieve is realized by the DMD, and in the binary
regime, the refreshment rate of the DMD can reach the maximum
value of around 17 kHz. It implies that we can rapidly change the
sieve in order to swiftly refresh the trial factor p. In the receiver
plane, we can use the camera with a high frame rate to quickly record
the intensity patterns of the modulated OAM beams, saved as 8-bit
grayscale pictures. The commercial software Matlab reads a picture
and converts it into a matrix. We save a gray value of the central
pixel (corresponding to the on-axis intensity value) and plot it as a
function of the trial number p. This function is normalized by its
maximum to ensure the on-axis intensity value is unity when p is
a factor of l. We can visually separate factors from non-factors by

FIG. 6. (a) Fluctuating and ensemble average phases of the field of a noisy OAM
beam. (b) Time evolution of two phases at the same locations within the phase
distribution marked by the purple dots (p1 and p2) in (a). The radius of the purple
dashed circles in (a) corresponds to the coherence width of the beam.
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looking at the threshold line. According to the short board princi-
ple, the speed of our technology mainly depends on the lower refresh
rate of the DMD and the camera frame rate. Here, we choose the
camera (IBTEK, STC-MBS43POE) as an example. Its frame rate can
be up to 282 fps, so the ideal time interval to test a trial factor is
around 3.55 ms. If we attempt to factorize a large number l = 106,
say, the trial factor p takes one value from 2 to

√
l. The total time

it takes to perform the factorization is then around 3.55 s, which
is significantly faster than the competing number factorization
methods.

Furthermore, the noisy nature of any realistic light source
implies that any genuine light beam is, in practice, only partially
coherent. The latter has a random (fluctuating) phase. Our proto-
col heavily relies on the tight control of the source OAM beam and
sieve pinhole phases and, hence, can lose credibility in the presence
of phase fluctuations. To elucidate the role of phase fluctuations, we
compare the fluctuating and ensemble average phases in Fig. 6(a).
The latter is obtained by averaging over an ensemble of 5000 realiza-
tions of OAM beams with a topological charge of l = 2. We observe
in the figure that the average phase is rather stable within the purple
dashed circle area. In Fig. 6(b), we plot the phase magnitudes at the
same locations, labeled by the purple dots p1 and p2, within the phase
distributions of the random and average phases. We can infer from
the figure that the random phase (blue line) fluctuates dramatically
with time, while the average phase (red line) is nearly stationary.
Instructively, the average phase outside the purple dashed circle area
fluctuates as well [see the right panel in Fig. 6(a)]. The radius of the
circle is given by the coherence width of the source. Thus, we can
employ noisy OAM beams in our number factorization protocol as
long as the pinholes of the sieve are offset from the optical axis by
distances shorter than the coherence width of the beam.

In summary, we have pointed out the link between number the-
ory and the OAM beams that make it possible to formulate a simple
and time-efficient protocol for number factorization. In our proto-
col, an OAM beam, modulated by a prime-number sieve, is focused
by a thin lens. The number to be factorized corresponds to the topo-
logical charge of the beam, and all trials p are encapsulated into the
sieve. The factors and non-factors can be distinguished by measuring
the on-axis intensity of the focused beam. The experimental scheme
is simple, and the results are independent of the sieve orientation.
We can swiftly refresh a sieve with a DMD to change the trial fac-
tor p. In principle, we can decompose a number as large as 106 in
3.55 s by our protocol. For the upper bound on the number to be
composed, we should realize the central angle (equal to d/r0) corre-
sponding to a circle is much smaller than the phase period φT = 2π/l,
to ensure the Dirac pinhole can be replaced by a small-sized circle of
diameter d. It is obtained by l≪ 2πr0/d.

Our protocol works for noisy OAM beams as long as the sieve
size is smaller than the coherence width of the beam. Our results
are independent of the wavelength of light and only depend on
the azimuthal periodicity of the phase distribution of OAM beams.
Hence, our protocol is capable of handling any OAM beams, such as
Laguerre–Gaussian, Bessel, etc., as well as vortex carrying waves of
any physical nature (electron, matter-wave vortices, etc.).

Our work is able to serve for OAM detection, as we can deter-
mine all prime numbers of the OAM beam’s topological charge
value. Furthermore, we believe this advanced protocol can stimulate
the development of optical encryption and encoding.4,5
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