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We discover a connection between a Gauss sum of num-
ber theory and the degree of coherence (DOC) of the field
in a transverse plane of structured speckled light beams.
We theoretically demonstrate and experimentally validate
that prime number factorization can be achieved by manip-
ulating the source beam’s DOC in Young’s double-slit
experiment. The determination of whether a number can
be factored is based solely on the visibility of the resulting
interference patterns. Our findings offer new insights into
information encryption and decryption, data compression,
etc. © 2024 Optica Publishing Group. All rights, including for text
and data mining (TDM), Artificial Intelligence (AI) training, and simi-
lar technologies, are reserved.
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Partially coherent beams (PCBs), as the dynamic speckles,
exhibit statistically stable beam properties despite random fluc-
tuations in an instantaneous phase [1]. Compared to their
coherent counterparts, PCBs can eliminate beam interference
and remain robust in adverse environment, making them suit-
able for a wide range of applications across multiple disciplines,
such as speckle-free optical imaging and optical communication
through turbulent atmospheres [2–5]. A key feature of PCBs
is their unique DOC. Gori and collaborators established the
sufficient condition for devising this function, leading to the
development of numerous PCBs with the prescribed DOC [6].
For further details, refer to review articles [7,8]. Experimentally,
PCBs are typically realized using two primary methods: the
van Cittert–Zernike theorem and the mode superposition prin-
ciple [7–10]. Recent advancements in optical systems have led
to several remarkable applications utilizing the DOC, includ-
ing high-capacity and high-fidelity information encryption,
robust far-zone optical imaging, imaging beyond the Rayleigh
diffraction limit, and prime number factorization [11–16].

Prime number factorization, particularly for large numbers,
is an exceedingly challenging problem and is therefore con-
sidered a cornerstone of information security [17,18]. This
technique has also been employed for dimensionality reduc-
tion in machine learning [19], image or data compression [20],

efficient color encoding [21], and providing new insights into
quantum mechanical systems dynamics [22]. Various protocols
for performing prime number factorization have been proposed
so far, in both quantum and classical physics. In classical physics,
the most popular method involves incomplete or complete Gauss
sums. The incomplete Gauss sums, in particular, require fewer
Gauss terms, making them more promising for experimental fac-
toring of extremely large numbers [23]. This approach is widely
applied in the optical Talbot effect [24], matter waves [25],
nuclear spin waves [26], interferometers [27], etc. In optics,
Pelka et al. established a link between the optical Talbot effect
with Gauss sum, achieving factorization up to the value 27 [24].
Bigourd et al. factored numbers using a sequence of shaped
ultrashort pulses, which demands extremely precise positioning
of multiple pulses [27]. Recently, we have advanced number fac-
torization protocols using axial correlation revivals of structured
random waves [28] and the periodicity of the OAM phase dis-
tribution [29]. The former can be applied to very large numbers,
while the latter enables ultrafast factorization.

In this Letter, we establish a link between an incomplete Gauss
sum and the periodicity of the two-point field correlation of
optical beams in their transverse plane. We provide an alternative
method for prime number factorization using PCBs with the
prescribed DOC in Young’s double-slit experiment.

In the space-frequency domain, the statistical properties of
the Schell-model PCBs are typically characterized by the cross-
spectral density function. In one dimension, this function is
represented as follows:

W (x1, x2) = τ
∗ (x1) τ (x2) µ (x2 − x1) , (1)

where τ is the complex amplitude and here is supposed to be
τ (x) ∝ exp

(︁
−x2/2σ2

0

)︁
with the beam width σ0. µ (x2 − x1) rep-

resents the DOC of the field at a pair of points x1 and x2 and
depends solely on the difference between positional locations. It
follows from the optical coherence theory that the DOC of the
Schell-model PCBs can be described by the Fourier transform
of the spectral density function Q (v) [6] as follows:

µ (x2 − x1) =

∫
Q (v) exp [−i2π (x2 − x1) v]dv. (2)
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Fig. 1. Schematic illustration of the principle of prime number factorization using two-point correlations of partially coherent beams. (a)
Diagram of Young’s double-hole experiment with the prescribed PCB. (b) Curves of the DOC for p= 5, 6, and 7. (c) Corresponding beam
interference fringes, where the distance between two holes is d = 72. The parameter M is set to 5.

We can construct the desired DOC by adopting the appropriate
Q (v) function. Here we define the spectral density function as
follows:

Q (v) =
1
M

M∑︂
m

δ

(︃
v −

m2

P

)︃
, (3)

where M is a number of Dirac functions and P determines the
location of each Dirac function. By substituting Eq. (3) into
Eq. (2), the DOC can be expressed as follows:

µ (x2 − x1) =
1
M

M∑︂
m

exp
[︃
−i2π (x2 − x1)

m2

P

]︃
. (4)

Next, we examine a Young’s type interference experiment,
where the produced beam illuminates a screen with two pinholes,
and its transmittance function reads as follows:

T (x) =
1
2
[δ (x + D/2) + δ (x − D/2)] . (5)

Here D characterizes the distance between the pinholes. The
outgoing beam is focused by a thin lens with the focal length
f . The pattern in the rear focal plane of the lens is given by the
following:

I (ρ) =
∬

W (x1, x2)T∗ (x1)T (x2)

× exp
[︃
−

i2π
λf

(x2 − x1) ρ

]︃
dx1dx2.

(6)

By substituting Eqs. (1), (4), and (5) into Eq. (6), we obtain the
following:

I (ρ) ∝ 1 + Re
[︃
µ (D) exp

(︃
−

i2π
λf

Dρ
)︃]︃

. (7)

If we take µ (D) = |µ (D) | exp (iθD), where | · | denotes the mod-
ulus and θD is the angle of µ (D), the above equation can be
rearranged as follows:

I (ρ) ∝ 1 + |µ (D)| cos
(︃
θD −

2π
λf

Dρ
)︃

. (8)

The visibility of the beam interference fringes is determined by
the following:

VD
P =

I(ρ)max − I(ρ)min

I(ρ)max + I(ρ)min
= |µ (D)| =

|︁|︁|︁|︁|︁ 1
M

M∑︂
m

exp
(︃
−i2πm2 D

P

)︃|︁|︁|︁|︁|︁ .
(9)

The above equation clearly demonstrates that the visibility of
beam interference fringes is described by the incomplete Gauss
sum. As illustrated in Refs. [28,29], it provides us with a method
to factorize a number into prime factors using Young’s double-
slit interference setup, where the number to be factorized is
set as the distance D between the two pinholes, while the trial
factor is determined by the parameter P. The parameters D
and P are both in meters. For more generality, we define the
number D to be factorized and the trial factor P as d = D/α
and p = P/α, where α is a constant in meters, making d and p
dimensionless. The constant α also serves to adjust the values of
D and P (especially when they are large) to ensure that they are
attainable in the following experiment. Here, if the trial factor
p is a true factor of the number d to be factorized, the visibility
ideally reaches 1; otherwise, it oscillates rapidly and takes on
small values. To eliminate the influence of ghost factors (non-
factors with high visibility) and improve factor identification,
we adopt the established principle that the parameter M satisfies
M ≥ 0.7 4√d [28,29]. All ghost factors are suppressed below the
threshold value 1/

√
2.

Next, we utilize the theoretical framework of the derived ana-
lytical expression to advance and implement a prime number
factorization protocol. Figure 1(a) shows the schematic diagram
of Young’s double-slit interference setup. The PCB with the
prescribed DOC illuminates a two-pinhole screen, which is then
focused by a thin lens. Here, the distance between the two pin-
holes is set to d = 72, and the trial numbers p are taken as 5, 6,
and 7, respectively. Figure 1(b) displays the degrees of coherence
for different values of p. The correlation values |µp (d) | at the
two pinholes are 0.45, 1.00, and 0.37, respectively, as indicated
by the circles. The visibility of the beam interference fringes is
determined by the DOC of the source. The corresponding inter-
ference patterns and their visibilities at the back focal plane of
the lens are presented in Fig. 1(c), where the visibilities match
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Fig. 2. Visibility as a function of the trial factor p, with the
numbers d to be factored set as (a) d = 1001 = 7 × 11 × 13 and (b)
d = 20677 = 23 × 29 × 31. All factor and non-factors are distinctly
distinguished by the threshold value 1/

√
2, indicated by the solid

red lines. The parameter M is set to 5.

the values |µp (d) |. It is observed that only when a trial factor
matches the true one, p= 6, does the visibility reach 1.00, clearly
demonstrating that we can distinguish factors from non-factors
solely by the visibility of beam interference fringes. We also
factorized the numbers 1001 and 20677, and the corresponding
visibilities for the trial factors p are shown in Fig. 2. All factors
and non-factors are clearly distinguished by the threshold line
1/
√

2, marked by the solid red line.
Finally, we conducted an experimental verification of the

aforementioned theoretical results. We exhibit our experimen-
tal setup in Fig. 3. A linearly polarized light beam, emitted
from a Nd:YAG laser, passes through a half-wave plate and is
expanded by a beam expander. The outgoing light beam then
traverses a beam splitter and illuminates a phase-only spatial
light modulator (SLM). We rotate the half-wave plate to ensure
the polarization direction of the beam is horizontal, as the SLM
is responsive only to this direction.

To generate a PCB with the prescribed DOC, we utilize the
incoherent superposition of customized speckles [30], whose
random electric fields are defined by the following:

E (x) = τ (x)FT[P (v)Cn (v)], (10)

Fig. 3. Experimental setup for prime number factorization with
Young’s double-hole experiment. HP, half-wave plate; BE, beam
expander; BS, beam splitter; SLM, reflective phase-only spatial
light modulator; L1–L3, thin lenses with the identical focal length
f1 = f2 = f3 = 25 cm; DMD, digital micro-mirror device; camera,
CCD camera. (a) Holograms for customizing PCBs loaded onto the
SLM. (b) Double-hole screen loaded onto the DMD.

where FT denotes a Fourier transform. Cn (v) is a complex
random function, whose real and imaginary parts follow the
identical normal distributions. Detailed procedures for obtain-
ing the random electric field are provided in Ref. [30]. In the
y-direction, the electric field is supposed to be uniform, and we
have E (y) ∝ 1. To encode a complex random electric field into a
hologram grating, we adopt the complex amplitude modulation
encoding algorithm [31]. The SLM phase is suggested by the
following:

ϕSLM (x, y) = Am sin {Arg [E (x)] + 2πfxx} . (11)

Here Am is attained through numerical inversion: J1 (Am) =

|E (x) |, where J1 characterizes a Bessel function of the first
kind and first order. “sin” denotes a sine function, and we adopt
“Arg” to attain the phase of E (x). fx is the frequency of the grat-
ing, determining the location of the first-order diffraction light
beam.

The beam reflected by the SLM and a beam splitter passes
through a modified 4f optical imaging system, which comprises
two identical lenses and an iris. The iris is used to select the
positive or negative first diffraction order. The electric field of
the beams transmitted by the order forms our desired signal.
By refreshing the complex random function Cn (v) to update the
hologram gratings, we generate a speckle ensemble. Due to the
ergodic nature of these speckles, we can synthesize the desired
PCBs through the incoherent superposition of all speckles, as
previously described. The produced beams then illuminate the
digital micro-mirror device (DMD), on which the double-hole
plate is loaded. Given that the illumination source follows the
Schell-model type, its DOC depends only on the coordinate dif-
ference, rather than the specific coordinates of the points (as
described in Eq. (1)). This feature obviates the need to cal-
ibrate for any lateral offset of the two pinholes, significantly
simplifying our experimental procedure.

The modulated beams are focused by a thin lens and arrive
at its rear focal plane. We use the CCD camera to capture the
beam interference fringes. The relevant parameters are set and
measured as α = 0.1 mm and σ0 = 2 mm, respectively. The the-
oretical and experimental results are exhibited in the left and
right panels of Fig. 4. We factorized two numbers, d = 77 and
103. For d = 77, we tested the trial numbers p= 6, 7, and 8. As
shown in Figs. 4(a) and 4(b), only the visibility of the true factor
p= 7 reaches 1 in theory and 0.97 in the experiment. Similarly,
for d = 103, only the visibility of the true factor p= 103 reaches
1 in theory and 0.96 in the experiment, as shown in Figs. 4(c)
and 4(d). To provide further details, the experimental results of
the fringe visibility for various trial factors p are presented in
Fig. 5. The visibilities of the true factors of the numbers being
factorized reach or approach 1, while all non-factors are sup-
pressed below the threshold value 1/

√
2, marked by the solid red

line. The vertical lengths of the error bars indicate the absolute
value of the difference between the experimental and theoretical
results. The slight differences are mainly due to the deviations
in the coherent width, which originally stem from the limited
pixel size in SLM and DMD. Overall, Figs. 4 and 5 conspicu-
ously demonstrate that the experimental results are in excellent
agreement with the theory, thereby validating our protocol.

To summarize, we have established the relationship between
incomplete Gauss sums of the number theory and the DOC
of speckled light beams in the transverse plane of a Young’s
type double-pinhole experiment. The number to be factorized is
represented by the distance between the two pinholes, and the
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Fig. 4. Theoretical (left panel) and experimental (right panel)
results of the interference fringes in the back focal plane of the thin
lens. (a) and (b) show the results for d = 77, while (c) and (d) show
the results for d = 103. The fringe visibilities for the trial numbers p
are presented in the top left corner of each subplot. The parameters
M are set to 5 and 7 for the numbers 77 and 103, respectively.

Fig. 5. Experimental fringe visibility for various trial factors p,
with the numbers d to be factored set to (a) d = 77 = 7 × 11 and
(b) d = 103 = 1 × 103. All factors and non-factors are distinctly
distinguished by the threshold value 1/

√
2, indicated by the solid

red lines. The parameters M are set to 5 and 7 for the numbers 77 and
103, respectively. The vertical lengths of the error bars characterize
the absolute differences between the experimental and theoretical
results.

trial factor is embedded into the DOC of the field of illuminating
beams. We can distinguish factors from non-factors solely via
the visibility of the interference fringes. If a trial factor is a true
factor, the visibility theoretically reaches 1. All non-factors are
suppressed below a threshold value 1/

√
2. Further, if we take

a small value for α, it provides the possibility for factorizing
a large number. The experimental results agree well with the
theoretical ones, which proves the feasibility of this proposal.
We believe this method has potential applications in optical
encryption, information storage, and related fields.
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