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A B S T R A C T

We present a Talbot self-imaging inspired method for multiplying Laguerre–Gaussian (LG) beams of non-zero
radial indices. We explore theoretically and experimentally the LG beam diffraction from two-dimensional
(2D) periodic structures. In particular, we determine near-field LG beam diffraction patterns from a 2D
binary grating of a small opening ratio (OR). We demonstrate that incident LG beam intensity patterns
are reproduced as images of individual square apertures of the grating in certain Talbot planes. We also
investigate the impact of the number of fractional-Talbot and Talbot planes on the quality of the generated 2D
array of multiplexed LG modes. Our theoretical predictions are in good agreement with our experiments. Our
method can find applications in optical communication, optical tweezing, multi-particle trapping, screening,
and micro-manipulation.
1. Introduction

The generation and characterization of optical vortex lattices (OVLs)
have piqued the interest to researchers primarily due to such ap-
plications of vortex beams (VBs) as optical tweezing [1–4], optical
processing [5], particle trapping and guiding [6,7], and optical commu-
ications [8,9]. Numerous diffraction and interference-based methods
ave been advanced to generate OVLs with the aid of Dammann
ratings [10] and spatial light modulators (SLMs) [8,11]. Some recent
LM inspired approaches include phase multiplication and arbitrary
ode control [12], transformation optics [13], and adaptive generation

f complex light arrays [14]. Additionally, the wavefront of the beam
an be precisely shaped using an axicon array [15] and a spiral phase
rray [16]. These methods are pivotal in the generation of a two-
imensional (2D) array of vortex beams. Vortex light interference is
nother alternative for generating an OVL. For instance, Laguerre–
aussian (LG) beams [17], Bessel beams [18], and perfect OVs [19]
ave already been used to generate OVLs. Further, optical coherence
attices [20–22] have been successfully employed to generate arrays of
artially coherent Bessel beams carrying optical vortices [23], as well
s polarization arrays [24].

Yet another method of generating an OVL utilizes the Talbot effect
ith a VB illumination of a 2D grating. In [17] the authors developed

∗ Corresponding author at: Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran.
E-mail address: rasouli@iasbs.ac.ir (S. Rasouli).

a theory of diffraction of LG beams with zero radial index from 2D
periodic structures. In particular, they have shown that a zero radial
index LG with an odd topological charge (TC) diffracted from a 2D
sinusoidal or Ronchi grating can be multiplexed into an LG array at the
Talbot planes of the structure, so that all multiplexed LGs carry a unit
TC. However, it was shown in [25] that as long as the opening ratio
(OR) of the grating is much smaller than 1/2, the multiplexed arrays
carry the same TC as the source LG beam regardless of the magnitude
and parity of its TC. Experimental generation of OVLs with the aid
of the Talbot phenomenon under illumination with VBs having zero
radial index have also been reported [26–29]. We note in passing that
in [30–32], the diffraction of an LG beam with zero radial index from
a one-dimensional (1D) grating was successfully utilized to determine
the TC of an incident vortex beam. Further, it was shown in [33] that
for a 1D grating with a much smaller OR, the contrast of the fringe-like
diffraction pattern formed at the image location of individual lines of
the grating increases significantly.

At the same time, the diffraction of a VB with non-zero radial index
from a 1D grating with a small OR has also been recently studied [34],
and in this diffraction geometry, the transformation of LG beams into
a 1D array of Hermite–Gaussian modes was reported. It is also worth
noting that the Talbot self-imaging of a linear grating, illuminating
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Optics Communications 574 (2025) 131203 
by a VB, into another similar linear grating in a moiré deflectometry
etup was used for the illuminating beam characterization [35], and the

same arrangement was utilized to detect a TC sign change on reflection
in [36].

In this work, we explore the multiplication of LG beams with
on-zero radial indices using the Talbot effect. We demonstrate the

generation of multiple copies of an incident LG beam with arbitrary
TC in specific Talbot planes of a 2D binary grating with small OR by
lluminating the grating with an LG beam with a non-zero radial index.

e optimize the quality of generated LG arrays by identifying the
ptimum Talbot planes for high-quality optical OVL production using a
egree of similarity. We successfully verify our analytical theory with
xperiments. Our approach is simpler and more cost-effective than any
LM-based method. Unlike interference-based methods, our protocol
nables generation of a large number of vortices at a given Talbot plane,

which are then replicated during propagation. This approach holds
romise for applications to optical communications, optical tweezing,
ensless multi-particle trapping, screening, and micro-manipulation.

It is important to highlight the new features of this work compared
to the method presented in [25]. In [25], only the theory of diffraction
of an LG beam with a given value of 𝑙 and a zero radial index (𝑝 = 0)
was presented. In the general case of 𝑝 ≠ 0, treated here, the conditions
for generating arrays of LG beams at specific Talbot distances depend
on 𝑝, which was not addressed in the previous method. Since LG
beams with 𝑝 ≠ 0 have multiple intensity rings, we evaluate the
resulting beams by comparing them to the corresponding ideal LG ones.
Additionally, this work presents, for the first time to our knowledge,
experimental results on the generation of arrays of LG beams with
≠ 0 based on the Talbot effect. Previous studies, such as [17,25], only

considered theoretical conditions for incident beams with 𝑝 = 0 and
mpinging structures with various OR. Furthermore, this work details
ow to produce high radial index LG beams using multi-circle phase-
hifted amplitude fork gratings. Finally, in this work we explore in
reater detail how the results can be implemented in multi-particle
rapping, manipulation, and optical communications.

. Diffraction of optical beams from 2D orthogonal periodic struc-
tures: a general formulation

Let 𝛬𝑥 and 𝛬𝑦 be fundamental periods and 𝑓𝑥 = 𝛬−1
𝑥 and 𝑓𝑦 = 𝛬−1

𝑦
be fundamental frequencies of a 2D orthogonal periodic structure along
𝑥 and 𝑦 directions, respectively. The transmittance of light through the
structure can be expressed as a 2D Fourier series as [37,38]:

(𝐫) =
+∞
∑

𝑚,𝑛=−∞
𝑡𝑚,𝑛𝑒

𝑖𝐤𝑚,𝑛 .𝐫 , (1)

here 𝐫 = (𝑥, 𝑦) = (𝑟 cos 𝜃 , 𝑟 sin 𝜃) is a position vector, 𝐤𝑚,𝑛 = (2𝜋 𝑚𝑓𝑥,
𝜋 𝑛𝑓𝑦), and 𝑡𝑚,𝑛 indicates the (𝑚, 𝑛)th Fourier coefficient. Now assume

that the 2D orthogonal periodic structure is illuminated by an optical
beam with a finite transverse extent. The complex field 𝛹 (𝐫, 0) of the
beam immediately past the structure is related to the incident field
𝑢(𝐫, 0) by the expression

𝛹 (𝐫, 0) = 𝑡(𝐫)𝑢(𝐫, 0). (2)

Next, the field, having propagated over a distance 𝑧 in free space away
from the structure, can be expressed as [38]

𝛹 (𝐫, 𝑧) =
( 𝑘
2𝜋 𝑖𝑧

)

∫ 𝑑𝐫′𝛹 (𝐫′, 0)𝑒𝑖𝑘(𝐫
′−𝐫)2∕(2𝑧), (3)

where 𝑘 = 2𝜋∕𝜆, 𝜆 being a carrier wavelength. On substituting for 𝑡(𝐫)
from Eqs. (1) and (2) into Eq. (3) and re-arranging exponential terms,
we obtain

𝛹 (𝐫, 𝑧) ∝
+∞
∑

𝑚,𝑛=−∞
𝑡𝑚,𝑛𝑒

−𝑖𝑘𝑟2𝑚,𝑛∕(2𝑧)
( 𝑘
2𝜋 𝑖𝑧

)

∫ 𝑑𝐫′𝑢(𝐫′, 0)𝑒𝑖𝑘(𝐫′−𝐫𝑚,𝑛)
2∕(2𝑧). (4)

Here 𝐫𝑚,𝑛 = 𝐫 − 𝐤𝑚,𝑛𝑧∕𝑘 where 𝐤𝑚,𝑛𝑧∕𝑘 is a position vector of the
center of the (𝑚, 𝑛)th diffraction order so that 𝐫 can be regarded
𝑚,𝑛 d

2 
as the position vector in the coordinates transformed to the center
of the (𝑚, 𝑛)th diffraction order and we dropped an irrelevant overall
quadratic phase factor. Observing that the inner integral on the right-
and side of Eq. (4), together with the factor 𝑘∕2𝜋 𝑖𝑧, yields the incident
ield propagated to the plane 𝑧 = 𝑐 𝑜𝑛𝑠𝑡 ≥ 0, we can rewrite Eq. (4) as

(𝐫, 𝑧) ∝
+∞
∑

𝑚,𝑛=−∞
𝑡𝑚,𝑛𝑒

−𝑖𝑘𝐫2𝑚,𝑛∕(2𝑧)𝑢
(

𝐫𝑚,𝑛, 𝑧
)

, (5)

here 𝐫𝑚,𝑛 = (𝑥𝑚, 𝑦𝑛) = (𝑥 − 𝑚𝜆𝑧𝑓𝑥, 𝑦 − 𝑛𝜆𝑧𝑓𝑦). We note in passing that
his result can alternatively be derived following the approach of [34].

We now specify to incident LG beams defined as [39]:

𝑢(𝐫, 0) ∝
(

𝑥 + 𝑖𝑠𝑦
𝑤0

)

|𝑙|
exp

(

− 𝑟2

𝑤2
0

)

𝐿|𝑙|
𝑝

(

2𝑟2

𝑤2
0

)

, (6)

where 𝑙 and 𝑤0 denote the TC and width of a beam, respectively. The
TC sign is determined by 𝑠 and 𝐿|𝑙|

𝑃 denotes an associated Laguerre
olynomial, where 𝑝 shows the radial index of the beam. The complex
mplitude of an LG beam at the propagation distance 𝑧 away from the
ource can be expressed as

𝑢(𝐫, 𝑧) ∝ 𝑔𝑙𝑝(𝑧)
(

𝑥 + 𝑖𝑠𝑦
𝑤(𝑧)

)

|𝑙|
exp

(

𝑖𝑘𝑟2

2𝑞(𝑧)

)

𝐿|𝑙|
𝑝

[

2𝑟2

𝑤2(𝑧)

]

, (7)

where

𝑔𝑙𝑝(𝑧) =
𝑤0
𝑤(𝑧)

exp [𝑖𝑘𝑧 − 𝑖 (|𝑙| + 2𝑝 + 1) 𝜁 (𝑧)] , (8)

and
1

𝑞(𝑧)
= 1

𝑅(𝑧)
+ 𝑖 𝜆

𝜋 𝑤2(𝑧)
. (9)

In Eqs. (7) through (9), we introduced the following definitions:

𝑤(𝑧) = 𝑤0

√

1 +
(

𝑧
𝑧0

)2
, (10a)

𝑅(𝑧) = 𝑧
[

1 +
( 𝑧0
𝑧

)2
]

, (10b)

𝜁 (𝑧) = t an−1
(

𝑧
𝑧0

)

, (10c)

where 𝑤(𝑧) is a current beam width, 𝜁 (𝑧) denotes a Gouy phase shift,
and 𝑧0 stands for a Rayleigh range given by 𝑧0 =

𝜋 𝑤2
0

𝜆 .
For the sake of illustration, we display the intensity and phase

atterns of an LG beam with 𝑙 = 3, 𝑝 = 1 in Fig. 1(a) and (b). We
can trivially convert the amplitude and intensity to polar coordinates
o yield the results in Eqs. (A.1) and (A.2) of Appendix A. As shown
n the Appendix, the intensity is a function of a dimensionless radial

parameter, denoted by 𝑅 = 𝑟
𝑤0

. We depict the radial intensity distri-
bution of LG beam with 𝑙 = 3, 𝑝 = 1 in Fig. 1(c). Next, we can define
two radial parameters 𝑟in and 𝑟out as the nearest and farthest radial
distances from the optical axis at which the intensity falls to 1

10 of
the maximum intensity, respectively. The corresponding dimensionless
parameters 𝑅in = 𝑟in

𝑤0
and 𝑅out =

𝑟out
𝑤0

can be evaluated in terms of 𝑙 and

𝑝, and we show them in Fig. 1(d) and (e).
Now suppose that a 2D orthogonal periodic structure, with a trans-

mittance indicated by Eq. (1), is illuminated by an LG beam at its beam
waist shown by Eq. (6). It follows at once by combining Eqs. (5) and
(7) that

𝛹 (𝐫, 𝑧) ∝ 𝑔𝑙𝑝(𝑧)
+∞
∑

𝑚,𝑛=−∞
𝑡𝑚,𝑛𝑒

−𝑖𝑘𝑟2𝑚,𝑛∕(2𝑧)
(

𝑥𝑚 + 𝑖𝑠𝑦𝑛
𝑤(𝑧)

)

|𝑙|

× exp
(

𝑖𝑘𝑟2𝑚,𝑛
2𝑞(𝑧)

)

𝐿|𝑙|
𝑝

(

2𝑟2𝑚,𝑛
𝑤2(𝑧)

)

. (11)

Eq. (11) yields a general expression for the optical field of an LG beam
iffracted from a 2D orthogonal periodic structure of arbitrary profile.
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Fig. 1. (a) Intensity and (b) phase patterns of an LG beam with 𝑙 = 3, 𝑝 = 1. (c) The intensity profile along the radial direction is illustrated in (a) with the dashed line AB. (d)
nd (e), 𝑅in and 𝑅out of different LG beams having different values of TC and radial index.
1
b
l

. LG beam multiplication

We are now in a position to examine the diffraction of an LG beam
ith non-zero radial index from a 2D orthogonal binary grating with

he transmission function

𝑡(𝑥, 𝑦) = 1
4

{

1 + sign
[

cos
( 2𝜋 𝑥

𝛬

)

− cos(𝜋 𝜇)
]

}

×

{

1 + sign
[

cos
(

2𝜋 𝑦
𝛬

)

− cos(𝜋 𝜇)
]

}

, (12)

where ‘‘sign’’ denotes a signum function, 𝛬 is a period of the grating
in both 𝑥 and 𝑦 directions, namely 𝛬𝑥 = 𝛬𝑦 = 𝛬, and 𝜇 = 𝑎

𝛬 is the OR.
The signum function simply gives the sign for the given values of its

rgument. For argument value greater than zero, the value of the output

3 
is +1, for argument value lesser than zero, the value of the output is
−1, and for zero value of argument, the value of the output is zero. The
parameter 𝜇 in the equation ranges from 0 to 1 and acts as the OR of the
resulted binary grating. By changing the value of 𝜇 in the transmission
function 𝑡(𝑥, 𝑦), we directly alter the OR of the binary grating. As 𝜇
increases, the width 𝑎 of the open regions increases proportionally,
thereby increasing the OR. Conversely, decreasing 𝜇 reduces the width
𝑎 of the open regions, thus decreasing the OR. This relationship ensures
that the OR is always equal to the value of 𝜇 used in the equation, and
it changes linearly with 𝜇. The grating is schematically depicted in Fig.
 of Ref. [25] and the corresponding Fourier coefficients, 𝑡𝑚,𝑛, are given
y Eq. (21) of the same reference. We can then evaluate the diffracted
ight field by substituting said coefficients into Eq. (11).
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Fig. 2. Colored horizontal bars show multiplication intervals for different values of TC and radial index at 𝑤0 = 6𝛬, 30𝛬. Stars show the locations of optimal Talbot planes within
ultiplication intervals or the closest to their endpoints. See also Visualization 1.
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.1. Conditions for LG beam multiplication

In Ref. [17], the diffraction pattern of LG beams of zero radial
index, 𝑝 = 0, by a 2D periodic sinusoidal grating was examined and
he optimal self-healing position and interval behind the grating were

determined. It was shown that the former is given by 𝑧1 ≈
𝛬
𝜆𝑤eff, where

is a grating period, and 𝑤eff = 𝑤0

√

|𝑙|
2 is an effective radius of the

LG beam. As only first diffraction orders are present in this case, their
interference generates a 2D array of LG beams with TC = 1 whenever
𝑙 is odd, and TC = 0 for even 𝑙’s. We refer to this phenomenon as
the first diffraction order interference (FDOI) effect in [25], where a

ultiplication interval, describing the propagation distance over which
he VB multiplication occurs, is also determined. To obtain multiple
eplicas of an incident LG beam carrying any TC, the interference of
igher diffraction orders must be present.

We now adopt the approach of Ref. [25] to figure out the optimal
albot plane positions and multiplication interval to multiply LG beams
ith non-zero radial index diffracted by the same type of grating with

mall OR. To this end, we estimate the spatial frequency extent of the
ncident LG beam in Appendix A. Using Eq. (A7) in Eq. (13) of [25],
e obtain for the sought interval, normalized to 𝑧𝑇 , the following
xpression:
𝜋 𝑤0

4𝛬𝑅out
< 𝜁 < 𝜋 𝑤0

2𝛬𝑅out
. (13)

We exhibit the dimensionless parameter 𝑟out in Fig. 1(e) as a function of
𝑙 and 𝑝. Eq. (13) identifies the Talbot plane positions within which we
can attain the highest multiplication accuracy. We mark the locations
of these optimal planes with stars in Fig. 2 and indicate 𝜁 falling
within the interval specified by Eg. (13) with colored horizontal bars
orresponding to varied |𝑙|, 𝑝, and 𝑤0

𝛬 . In Fig. 2 we exhibit the results
or 𝑤0 = 6𝛬, 30𝛬, |𝑙| = 1,… , 5, and 𝑝 = 0, 1, 3. As 𝜁 is an integer, we use
he nearest integer part function, ⌊⌉, to find its minimum and maximum
alues as

𝜁min =
⌊

𝜋 𝑤0
4𝛬𝑅out

⌉

, (14a)

max =
⌊

𝜋 𝑤0
2𝛬𝑅out

⌉

. (14b)

These two equations define the closest and the most distant Talbot
planes from the grating for which the optimal VB multiplication oc-
curs. We refer to the distance between the two optimal planes as a

ultiplication interval. We can find the optimal propagation distance,
opt = 𝜁opt𝑧𝑇 , by comparing the replicated versus the original LG beams

and maximizing the similarity between the two. In the next section, we
show that 𝜁opt is close to the end of the multiplication interval using a
imilarity function.
4 
Eqs. (13) and (14) imply that the boundaries and length of the
ultiplication interval are inversely proportional to 𝑅out. However, by

boosting the ratio of the beam waist to the grating period, 𝑤0
𝛬 , the

ultiplication interval can be enlarged and its center shifted away
rom the grating. This is because the value of 𝑅out increases with

the magnitude of TC and radial index, see Fig. 1(e). By increasing |𝑙|
nd 𝑝, the length of the multiplication interval can be reduced, with
ts center shifting toward the diffraction grating. We illustrate these

trends in Fig. 2. In the background Visualization 1, we exhibit the field
patterns, evaluated in different Talbot planes, of LG beams with 𝑙 = 2
and variable radial indices.

Fig. 2 illustrates a comparative analysis between two images, one
with a width of (𝑤0 = 6𝜆) and the other with (𝑤0 = 30𝜆). This compar-
ison highlights a quintuple proportionality between the dimensions of
the two images.

As previously mentioned, 2D gratings with sinusoidal and Ronchi
profiles are not suitable for generating replicas of the incident beam
with topological values greater than one, (𝑙 > 1). This is due to the
absence of higher-order diffraction by sinusoidal gratings and the elim-
ination of even diffraction orders by Ronchi gratings. Consequently, the
interference of these limited diffraction orders in the near field of these
gratings produces an array of LG beams with 𝑙 = 1 in the image planes
for odd 𝑙, regardless of the 𝑙 value of the incident LG beams. For even 𝑙,
it produces self-images of the grating apertures [25]. To point out this
ssue, it is necessary to include other diffraction orders in the spectrum
o contribute to the formation of the beam array. Diffraction of LG
eams with arbitrary 𝑙 and 𝑝 = 0 from binary gratings with different
Rs is studied in [25]. It has been shown that for the TC of the array
lements to match the TC of the incident light, an OR of one-tenth is
ptimal. Therefore, in this work, we consistently use an OR of one-tenth
or 2D structures.

. Degree of similarity of generated and source LG beams

To determine the quality of a Talbot effect generated LG mode, we
ompare its intensity pattern, 𝐼 ′ with that of the incident LG beam, 𝐼
n the same transverse plane 𝑧 = const. The complex amplitude of the
atter is proportional to a scaled Fourier transform of the source, c.f.
ef. [25]. The Fourier transform of an LG mode in polar coordinates

s given by Eq. (A.6). It follows that by setting 𝜌 = 𝑟
𝜆𝑧 , 𝜌0 = 1

𝜋 𝑤0
,

and 𝜌
𝜌0

= 𝜋 𝑤0
𝜆𝑧 𝑟 in Eq. (A.6), we can obtain the complex amplitude

of the incident LG beam. By applying the Fourier transform to Eq. (7)
with these parameters, we can re-scale the incident beam to facilitate
comparison with the Talbot-generated LG mode.

rasouli
Highlight

rasouli
Highlight
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Fig. 3. Degree of similarity between the Talbot generated LG modes and the original LG beams with 𝑙 = 1, and three radial indices for 𝑤0 = 6𝛬, 30𝛬. In all plots, hatched lengths
etermine the corresponding 𝜁min to 𝜁max intervals.
Fig. 4. 2𝜌out
𝛬

as a function of the propagation distance for variable 𝑤0 , 𝑙, and 𝑝. Stars show locations of the closest Talbot planes to endpoints of the multiplication interval, while
continuous colored plots cover all Talbot planes with the highest multiplication accuracy.
r
We use the following degree of similarity to quantify the quality of
he LG beam multiplication [40]:

𝑆 =
∬ 𝐼 (𝑥, 𝑦) 𝐼 ′ (𝑥, 𝑦) 𝑑 𝑥𝑑 𝑦

∬ 𝐼2 (𝑥, 𝑦) 𝑑 𝑥𝑑 𝑦 + ∬ 𝐼 ′2 (𝑥, 𝑦) 𝑑 𝑥𝑑 𝑦 − ∬ 𝐼 (𝑥, 𝑦) 𝐼 ′ (𝑥, 𝑦) 𝑑 𝑥𝑑 𝑦
, (15)

In Fig. 3, we show the degree of similarity between the generated
and incident LG beams propagated to the same transverse plane for
𝑙 = 1 and 𝑤 = 6𝛬, 30𝛬. The hatched areas in Fig. 3 indicate the
optimal Talbot distances that cover a range between 𝜁min and 𝜁max.
As is seen in the figure for 𝑝 = 0, the degree of similarity for the
5 
eplicas in any Talbot plane within the interval [𝜁min, 𝜁max] is nearly
unity. For higher values of 𝑝, since the intensity of the field inside the
inner rings grows with the propagation distance, so does the degree
of similarity. However, the adjacent LG modes start overlapping for
sufficiently long propagation distances. For these reasons, the most
optimal Talbot planes are located at the end of the multiplication
interval (see Visualization 1).

We define an outer radius 𝜌out of a replica beam as a distance from
the center of the beam to the point where the intensity drops to 1

10
of its maximum value. The outer radius grows with the propagation
distance. An optimal replica beam will have a maximum size of a
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Fig. 5. Multiplication of an LG with 𝑙 = 1, 𝑝 = 1, 𝑤0 = 30𝛬, and 𝜆 = 532 nm facilitated by a binary grating with 𝛬 = 0.2 mm and 𝜇 = 0.1 in integer Talbot planes. The first
column shows intensity profiles in a window encompassing the optical axis which is comprised of nine Talbot cells (an area of 3𝛬 × 3𝛬); the second column shows intensity
rofiles over a single Talbot cell (an area of 𝛬 × 𝛬); third and fourth columns show the phase profiles corresponding to the first and second columns.
indow with an area equal to the square of the grating period, 𝛬2.
his is because, as the replica beams spread on propagation they
tart overlapping which causes distortion over a certain propagation
istance; this distortion reduces their similarity to the incident beam.
eyond this window, adjacent beams interfere with each other and
heir degree of similarity drops precipitously (see Visualization 1). We
efine an optimal propagation distance, 𝜁opt, over which the replica and
riginal beams maintain maximum similarity. As shown in Fig. 3, 𝜁opt is

always close to the end of the multiplication interval. We evaluate 2𝜌out
𝛬

s a function of the propagation distance varying 𝑤0, 𝑙 , 𝑝 and present the
results in Fig. 4. Stars show the Talbot planes located at the endpoints
of intervals, say 𝜁min and 𝜁max. The ratio 2𝜌out

𝛬 increases linearly with
istance and reaches unity at about the end of the interval. It follows
hat 𝜁opt is located at that end. This conclusion reaffirms the results
isplayed in Fig. 3, indicating greater similarity toward the end of the

multiplication interval, especially for higher values of the radial index.
We evaluate how closely the generated beams mimic the original

beam, as illustrated in Fig. 3. The variations of the degree of similari-
ies, marked by an initial rise followed by a decline, are indicative of
the spatial dynamics of diffraction orders. Proximal to the grating, the p

6 
diffraction orders are yet to coalesce, precluding substantial interfer-
ence. In contrast, at extended distances, the diffraction orders diverge
adequately, forestalling any interference. This dynamic accounts for the
degree of similarities’ ascent at lower z-coordinates, where convergence
begins, and its descent as the orders separate, effectively minimizing
crosstalk.

In Fig. 4, the curvature observed in the solid line of the lower image
can be attributed to the limited spatial resolution of the simulation. This
inherent constraint in the simulation’s resolution results in a less precise
representation of the expected linear trajectory, thereby manifesting as
a noticeable curvature in the graphical output. It is important to note
that this does not reflect an error in the underlying physical principles,
but rather a limitation of the simulation’s capacity to depict fine details
at a higher resolution.

In Fig. 5, we illustrate the multiplication of a VB with 𝑙 = 𝑝 = 1,
𝑤0 = 30𝛬, and 𝜆 = 532 nm at integer Talbot planes of a binary grating
with 𝛬 = 0.2 mm and 𝜇 = 0.1. The first column shows the evaluated
intensity patterns on a window around optical axes consisting of nine
Talbot cells (area of 3𝛬 × 3𝛬). The second column exhibits the same
atterns over one of the single Talbot cells (area of 𝛬 × 𝛬), and in the
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Fig. 6. Same patterns as those in Fig. 5 corresponding to 𝑙 = 1, 𝑝 = 2.
A

L
c

f

hird and fourth columns, we present the corresponding phase profiles
f the first and second columns.

In Fig. 6, we exhibit the patterns for 𝑙 = 1, 𝑝 = 2, which are similar
o those of Fig. 5. Further, we show the multiplication of LG beams with
ariable TC and radial index at the optimal Talbot plane 𝜁opt in Fig. 7.
ll parameters are the same as in Fig. 5. We also present additional
etails in the background of Visualization 1.

In Fig. 8, we display the intensity profiles of selected LG modes
enerated in Talbot planes of the same grating as in Fig. 5. We present
ntensity profiles along the dashed line on each individually generated
attern and those of the corresponding incident LG beams in the third,
ixth, and ninth rows with solid and dashed lines, respectively. The
aximal similarity is attained in the intermediate Talbot planes. Such
 behavior is also manifest in Fig. 3.

Now, let us delve into the details of the formation of LG beam arrays
n fractional Talbot planes. Fig. 9 illustrates the intensity and phase

patterns observed in front of the nine central apertures of the grating
under LG beam illumination with 𝑙 = 1 and 𝑝 = 0. These patterns are
captured at various Talbot distances. In full Talbot planes (𝑧 = 2𝑧𝑇
nd 𝑧 = 4𝑧𝑇 , where we use 𝑧𝑇 = 𝛬2

𝜆 ), the same array of the incident
G beam is formed in front of the grating apertures. In half-Talbot
lanes (𝑧 = 𝑧𝑇 and 𝑧 = 3𝑧𝑇 ), there is a half-period shift in both the

𝑥 and 𝑦 directions. In the quarter-Talbot planes (𝑧 = 0.5𝑧𝑇 , 𝑧 = 1.5𝑧𝑇 ,
𝑧 = 2.5𝑧𝑇 , and 𝑧 = 3.5𝑧𝑇 ), we observe a duplication in the frequency
of the generated arrays. Similarly, in octant Talbot planes (𝑧 = 0.25𝑧𝑇 ,
𝑧 = 0.75𝑧𝑇 , 𝑧 = 1.25𝑧𝑇 , 𝑧 = 1.75𝑧𝑇 , 𝑧 = 2.25𝑧𝑇 , 𝑧 = 2.75𝑧𝑇 , 𝑧 = 3.25𝑧𝑇 ,
and 𝑧 = 3.75𝑧𝑇 ), there is another duplication of the arrays with respect

to the quarter-Talbot planes. The first and second row insets show

7 
enlarged regeneration of the incident LG beam in front of each aperture.
s is seen in the figures, the quality of the generated quarter and

octant Talbot images decreases over longer propagation distances. This
phenomenon is due to the increased size of the replicated LG beam over
long propagation distances. In the quarter and octant Talbot planes,
the number of array members in each direction is two and four times
greater than that in the Talbot and half-Talbot planes, respectively. As
the propagation distance increases, the LG beam replicas expand in te
transverse plane and overlap with each other losing their structure.
Other parameters for the beam and grating are the same as in Fig. 5.

We turn our attention to the same scenario as in Fig. 9, but under
G beam illumination with 𝑙 = 1 and 𝑝 = 1. Fig. 10 illustrates the
orresponding intensity and phase patterns observed in front of the

nine central apertures of the grating at the Talbot, half-Talbot, quarter
Talbot, and octant Talbot distances. Since the incident beam has two
intensity rings and its dimensions are larger than those in Fig. 9, the
replicas of the incident beam in the quarter and octant-Talbot planes
cannot be separated from each other, even at shorter propagation
distances, resulting in transverse overlap. This overlap prevents the
ormation of distinct beam arrays at these distances.

Now let us show that how we can position the proposed method
of generating arrays of LG beams as a very promising method for
alternative use in optical communications and optical tweezing. To
address the resulting beams evaluation further, we clarify that the
phase profiles of the generated arrays demonstrate that each element
possesses the expected orbital angular momentum (OAM). These phase
profiles confirm OAM content of each generated LG beam.

By demonstrating the feasibility of generating structured beam ar-
rays without the use of SLMs or intricate optical systems, our approach
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Fig. 7. Multiplication of LG beams with different values of TC and radial index in the 𝜁opt. All parameters are the same as those in Fig. 5. See also Visualization 1.
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offers a robust and versatile tool for advancing research and technology
in optical sciences and beyond. For instance, when a 2D grating is used
such that the incident beam strikes it perpendicularly from the top or
ottom, and a glass cell containing a liquid with suspended particles is
laced parallel to the grating plane at one of the optimal Talbot planes,
ach beam in the array can act as a 3D trap (as shown below). This
etup makes it possible to trap and rotate suspended particles within
he Talbot planes, enabling multi-particle trapping without the need
or complex devices like SLMs and focusing systems.

In the optical communications context, we propose that each gen-
rated LG beam of an array can be coupled into an optical fiber,
llowing for parallel communication channels. To demonstrate this
ption, we conducted simulations by isolating a single LG beam from
he array using an obstacle with a circular aperture, as illustrated in
ig. 11. Fig. 11(a) shows the generated array of LG beams in the fourth
albot plane. Fig. 11(b) depicts the obstacle used to isolate a single LG
 t

8 
eam. Fig. 11(c) show the single LG beam passing through the circular
perture. Fig. 11(d), (e), and the inset presented as 11(f) demonstrate
hat the isolated LG beam propagates without distortion when other
eams are absent. In Fig. 11(d) the divergence angles of the intensity
ings are presented with 𝜃1 ≈ 0.16◦ and 𝜃2 ≈ 0.52◦. The inset in
1(f) implies that each beam creates a 3D trap in the vicinity of the
albot planes. Additionally, other parts of Fig. 11 show the intensity
nd phase patterns of the propagated single LG beam at two different
ropagation distances. These results indicate that each generated beam
n the array retains the proper characteristics of an LG beam, including
he same intensity rings and phase profiles as the incident beam, albeit
t a reduced size. This property facilitates their integration into an array
f optical fibers for various applications.

In the following section, we present experimental results related to
he generation of an array of LG beams. We display the intensity pat-
erns observed at various Talbot and half-Talbot distances and compare
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Fig. 8. First, fourth, and seventh rows, the intensity patterns of nine central lobes of LG modes realized by diffraction of specified LG beams from the same grating as in Fig. 5.
The intensity profiles along the dashed line on each individually generated pattern and those of the corresponding incident LG beams are plotted in the third, sixth, and ninth
rows with solid and dashed lines, respectively.
p

these experimental findings with the theoretical predictions discussed
earlier. This comparison is intended to validate the theoretical models
and establish a clear connection between theory and experiment.

5. Experiments and comparison of theoretical and experimental
results

We exhibit the schematics of our experimental setup in Fig. 12. We
transmit a collimated Gaussian beam from a neodymium-doped yttrium
aluminum garnet (Nd:YAG) diode-pumped laser of carrier wavelength
𝜆 = 532 nm through a specially prepared amplitude fork grating to
produce an LG beam with adjustable azimuthal and radial indices
(𝑙 and 𝑝). These LG beams can also be generated using an SLM by
implementing the same grating structures on the SLM. In this study, we
present results based on amplitude fork gratings. For comparison, we
also generated the same LG beams using an SLM (3M X50, resolution:
1024 × 768, display: 0.7 in, polysilicon LCD). Both methods produced
9 
beams with the same structure and quality, but the power share for
the amplitude grating-based LG beams was higher. Therefore, we used
these beams for the remainder of the work.

Due to intrinsic 2D periodicity of SLM structures, SLM functions
almost as a 2D orthogonal binary structure. This leads to the generation
of an array of incident beams rather than a single beam in the far-field,
resulting in a lower power share for each diffraction order with unequal
distribution among different orders. By implementing a fork grating on
the SLM, each of the SLM diffraction orders branches into LG beams
on the secondary non-zero diffraction orders, but with a much lower
power share (see [4,41]). Employing amplitude fork gratings for the
generation of LG beams eliminates the need for an SLM. Although the
SLM facilitates precise control over the optical properties of beams, its
diffraction efficiency is compromised by the intrinsic attributes of the
2D periodic structure. Furthermore, the SLM implementation increases
the cost and complexity of the experimental protocol, requiring com-
uter systems for its operation. In contrast, amplitude fork gratings
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Fig. 9. Intensity and phase patterns in front of the nine central apertures of the grating under LG beam illumination with 𝑙 = 1 and 𝑝 = 0. The patterns are observed at various
Talbot distances: full Talbot (𝑧 = 2𝑧𝑇 and 𝑧 = 4𝑧𝑇 ), half-Talbot (𝑧 = 𝑧𝑇 and 𝑧 = 3𝑧𝑇 ), quarter-Talbot (𝑧 = 0.5𝑧𝑇 , 𝑧 = 1.5𝑧𝑇 , 𝑧 = 2.5𝑧𝑇 , and 𝑧 = 3.5𝑧𝑇 ), and octant-Talbot (𝑧 = 0.25𝑧𝑇 ,
𝑧 = 0.75𝑧𝑇 , 𝑧 = 1.25𝑧𝑇 , 𝑧 = 1.75𝑧𝑇 , 𝑧 = 2.25𝑧𝑇 , 𝑧 = 2.75𝑧𝑇 , 𝑧 = 3.25𝑧𝑇 , and 𝑧 = 3.75𝑧𝑇 ). Here, 𝑧𝑇 = 𝛬2

𝜆
. Other parameters for the beam and grating are the same as in Fig. 5.

Fig. 10. The same intensity and phase patterns of Fig. 9 for an incident LG beam with 𝑙 = 1 and 𝑝 = 1.

Optics Communications 574 (2025) 131203 

10 



P. Amiri et al.

a
a

𝑟

o
g

d
𝑙
T
a
n
o
G
c
c
b
o

g
b
r
p
g
a
d
W
c
a
s
f
e

p
m
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Fig. 11. Simulation demonstrating the feasibility of directing each generated LG beam of an array into an optical fiber for parallel communication channels. (a) The generated
rray of LG beams at the fourth Talbot plane. (b) The obstacle used to isolate a single LG beam at the fourth Talbot plane. (c) The single LG beam passing through the circular
perture. (d), (e), and the inset (f) show the isolated LG beam propagating without distortion when other beams are absent. (g) and (h) display the intensity, while (i) and

(j) present the corresponding phase patterns of the propagated single LG beam at propagation distances of 𝑧 = 6.8𝑧𝑇 and 𝑧 = 14𝑧𝑇 , respectively. In panel (e), 𝑟1 = 11.89𝛬 and
2 = 37.83𝛬 denote the radii of the first and second intensity rings at a propagation distance of 𝑧 = 20𝑧𝑇 .
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ffer a straightforward and cost-effective approach to vortex beam
eneration, circumventing the complexities associated with SLMs.

As illustrated in Fig. 12, we allowed the generated LG beams to
iffract from a 2D grating, producing arrays of LG beams with the same
and 𝑝 indices as the incident LG beam in certain Talbot and Half-
albot planes. To generate the required incident LG beams, we designed
nd constructed amplitude fork gratings with a specified dislocation
umber at the grating center, corresponding to the winding number
r TC of the LG beam generated by the diffraction of the incident
aussian beam. Additionally, we included a number of radii from the
enter of the grating where the lines have half-period displacements,
orresponding to the number of intensity null rings in the generated LG
eam, known as the 𝑝 parameter. We printed the transmission functions
f these gratings onto sheet glass.

It is important to understand how we utilize 1D fork gratings to
enerate LG beams with various 𝑙 and 𝑝 indices. Each of these generated
eams was subsequently used to illuminate a 2D grating structure,
esulting in a 2D array of incident beam replicas. In Appendix B, we
resent, a detailed design of generalized fork amplitude gratings. These
ratings feature co-centered circular paths that share the same center
s the fork grating. On these paths, we implemented specific lateral
isplacements on the grating lines, referred to as phase-shifted areas.
e refer to these fork gratings, which have phase steps on certain

o-centered circular paths, as ‘multi-circle phase-shifted fork gratings’
nd ‘generalized fork gratings’. The amplitude fork grating technique
implifies the generation of VBs, making it cost-effective and user-
riendly. In contrast, the SLM based technique offers the advantage of
asy adjustment of the VBs’ characteristics.

We present a typical fork grating pattern, which can be directly
rinted on sheet glass or implemented on the SLM in a transmission
ode, in the insets of the figure panel. The generated LG beams are

then characterized using diffraction from a curved-line linear grating,
confirming our method’s efficacy (see [42] for details). Subsequently,
11 
the LG beam is transmitted through a 2D linear amplitude grating
with a binary profile, having a period of 0.15 mm and an OR of 0.1.
This grating is fabricated by coating its transmission function onto
sheet glass. Lastly, we capture the near-field diffracted pattern with
ur camera (Nikon D7200). To ensure a high-resolution, aberration-
ree images, we record diffraction patterns directly onto the camera
ensor, bypassing the imaging lens of the camera. We also installed
he camera on a holder that can be precisely positioned on a rail to
each the camera’s sensitive area in the half-Talbot and Talbot planes,
etermined by 𝑧𝑇 = 𝛬2

𝜆 and its odd multiples, and 𝑧 = 2𝑧𝑇 and its
ultiples, respectively. For the 2D grating used, with 𝛬 = 0.15mm and
 laser beam wavelength of 532 nm, we have 𝑧𝑇 = 42mm.

We compare our experimental findings the theory, see red (the-
oretical) and green (experimental) patterns in Figs. 13 to 15. We
observe good agreement between the two sets of results. Figs. 13 to 15
llustrate the generation of impinging LG beams through diffraction of
 Gaussian beam by the amplitude fork gratings that are etched onto
 glass sheet with a periodicity of 0.1 mm. Impinging LG beams are
lso synthesized using the SLM. However, we focus on those obtained
ith the aid of amplitude fork gratings due to their high intensity
fficiency. The diffraction patterns presented in Figs. 13 and 14 were
ecorded in the corresponding 𝜁opt planes. In Fig. 15, in addition to
he diffraction patterns recorded in the optimal half-Talbot and Talbot

planes between 𝜁min and 𝜁max, we have also included experimental and
corresponding theoretical results for certain non-optimal half-Talbot
nd Talbot planes. This addition illustrates how, at the specified non-
ptimal half-Talbot distances (e.g., 𝑧 = 3𝑧𝑇 for 𝑙 = 2 and 𝑝 = 1,
nd 𝑧 = 5𝑧𝑇 for 𝑙 = 2 and 𝑝 = 2) and non-optimal Talbot distances
e.g., 𝑧 = 4𝑧𝑇 for 𝑙 = 2 and 𝑝 = 2), both the recorded experimental
esults and the predicted theoretical results exhibit low quality in the
roduction of incident LG beam arrays. Additionally, moving away
rom the optimal planes results in the absence of incident LG beam
rrays. The experimental outcomes, particularly those illustrated in the
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Fig. 12. Experimental setup for multiplication of LG beams with non-zero 𝑙 and 𝑝 parameters in certain Talbot planes. S.F. and 𝑧𝑇 stand for spatial filter and Talbot distance,
respectively; 𝑛 is an integer.
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Fig. 13. Theoretical (red) and experimentally recorded (green) diffraction patterns
bserved in front of nine adjacent and central apertures of a 2D binary amplitude
rating with an OR = 0.1 at the 𝜁opt plane. The grating is illuminated by LG beams

with 𝑙 = 0,… , 4 and 𝑝 = 0, 1, 2. For all patterns, the 2D grating period and beam
wavelength are 𝛬 = 0.15 mm and 𝜆 = 532 nm, respectively. The generated LG beams
have a beam width of 𝑤0 = 6𝛬. Optimal widths ranging from 𝑤𝐺

𝑖𝑛 = 0.9 ± 0.1 mm to
𝐺
𝑖𝑛 = 2.6 ± 0.1 mm were used for the Gaussian beam illuminating the amplitude fork
ratings to ensure high-quality LG beams.

nlarged Fig. 13, are promising. The intensity of a central ring notably
xceeds that of the secondary and tertiary ones, in accord with our
heoretical predictions. Additionally, the third ring exhibits a wider
ntensity distribution in both the predicted and observed patterns. It
s also noteworthy that the continuity of the second intensity loops is
isrupted, which is consistent with theory and experiment.

. Conclusions

We have theoretically explored the diffraction of LG beams with
on-zero radial indices from a 2D binary grating with sufficiently small
R. We have elucidated the detailed structure of diffraction patterns

n the near-field regime. In particular, we have shown that in certain
albot planes, the image of each individual aperture of the grating
as the same intensity pattern as an illuminating LG beam, thereby
ealizing efficient LG beam multiplication. The key to the success of our
pproach is to impose a reasonable limit on the radial extension of the
eplica LG beams, such that the multiplication interval can be defined
 R

12 
ver which the radial extension of each replica beam does not exceed
he grating cell area 𝛬2. This condition ensures that the multiplied
G beams do not overlap. We have identified an optimal propagation
istance, 𝑧opt over which the generated and incident beams have the
aximum similarity with no overlap. We have shown that 𝑧opt is very

lose to 𝑧max = 𝜁max𝑧𝑇 , especially for the higher values of 𝑝.
Our method carries the potential for applications to OAM assisted

ptical information processing, as well as optical routing/switching
n telecommunications. For example, our method can facilitate multi-
article manipulation and optical tweezers at different depths, corre-
ponding to different Talbot planes in a sample. However, the main
echnical challenge of generating a high-power incident LG beam is yet
o be addressed. The quality of the generated replicas of the incident
G beam depends on the 2D grating precision, including the parallelism
f its lines and the uniformity of its opening ratio across all areas.
herefore, it is essential to print the grating on an optical glass substrate
sing optical lithography to ensure accuracy in applications. Addition-
lly, imperfect LG beam illumination of a 2D grating can negatively
mpact the array generation. The Talbot effect entails ideal replication
or incident Fourier-invariant waveforms, such as LG beams. Therefore,
t is crucial to generate high-quality LG beams before multiplying them
n Talbot planes.
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Fig. 14. Theoretical (red) and experimentally recorded (green) diffraction patterns in front of nine adjacent and central apertures of an amplitude 2D binary grating having an
R = 0.1 at 𝜁opt plane when the grating is illuminated by LG beams with 𝑙 =0, . . . ,4 and 𝑝 = 0, 1, 2. For all patterns, the 2D grating period and the beam wavelength were 𝛬 =

0.15 mm and 𝜆 = 532 nm, respectively. For the generated LG beams a beam width of 𝑤0 = 6𝛬 is considered. Optimal widthes between 𝑤𝐺
𝑖𝑛 = 0.9 ± 0.1 mm to 𝑤𝐺

𝑖𝑛 = 2.6 ± 0.1 mm
ere used for the Gaussian beam illuminating the amplitude fork gratings to ensure high-quality LG beams.
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ppendix A. Angular spectrum of LG beam

The complex amplitude of an LG beam in polar coordinates (𝑟, 𝜃) at
he source plane 𝑧 = 0 reads [39]

𝑢𝑙𝑝(𝑟, 𝜃) =
(

𝑟
𝑤0

)

|𝑙|
𝐿|𝑙|
𝑝

(

2𝑟2

𝑤2
0

)

exp

(

− 𝑟2

𝑤2
0

+ 𝑖𝑙 𝜃
)

, (A.1)

implying the following intensity profile:

= 𝑅2|𝑙| exp
(

−2𝑅2)
[

𝐿|𝑙|
𝑝
(

2𝑅2)
]2
. (A.2)

Here 𝑅 = 𝑟
𝑤0

is a dimensionless radial parameter. As is well-known,
he LG intensity profile includes 𝑝+ 1 concentric rings [39]. We define

two radial parameters, called inner and outer radii, to characterize the
radial extension of the LG beam. The inner and outer radii, 𝑤in and
𝑤out, can be defined as the shortest and longest radial distances from
he optical axis of the beam at which the intensity falls to 1

10 of its
aximum value.
13 
Next, a Fourier transform of an axially symmetric function 𝑢(𝑟, 𝜃) =
𝑓 (𝑟) exp(𝑖𝑙 𝜃) can be expressed as [38]:

𝑈 (𝜌, 𝜑) = 2𝜋(−𝑖)|𝑙|𝑒𝑖𝑙 𝜑 ∫

∞

0
𝑓 (𝑟)𝐽

|𝑙|(2𝜋 𝑟𝜌)𝑟𝑑 𝑟, (A.3)

here (𝜌, 𝜑) are the polar coordinates in the reciprocal space and we
mployed the property of Bessel function, 𝐽−𝑚 = (−1)𝑚𝐽𝑚(𝑥) [43]. It
ollows that

𝑙
𝑝(𝜌, 𝜑) = 2𝜋 𝑤2

0(−𝑖)
|𝑙|𝑒𝑖𝑙 𝜑 ∫

∞

0
𝑅|𝑙|+1𝐿|𝑙|

𝑝
(

2𝑅2) 𝑒−𝑅
2
𝐽
|𝑙|
(

2𝜋 𝑤0𝑅𝜌
)

𝑑 𝑅.

(A.4)

Using the following table integral [44]:

∫

∞

0
𝑥𝜈+1𝑒−𝑥

2
𝐿𝜈
𝑛
(

2𝑥2
)

𝐽𝜈 (𝑥𝑦)𝑑 𝑥 =
(−1)𝑛

2𝜈+1
𝑦𝜈𝑒−

𝑦2
4 𝐿𝜈

𝑛

(

𝑦2

2

)

, (A.5)

we arrive at

𝑈 𝑙(𝜌, 𝜑) = 𝜋 𝑤2(−1)𝑝
(

𝜌
)

|𝑙|
𝐿|𝑙|

(

2𝜌2
)

exp

(

−
𝜌2

+ 𝑖𝑙 𝜑
)

. (A.6)
𝑝 𝑖|𝑙| 𝜌0 𝑝 𝜌20 𝜌20



P. Amiri et al.

h
t
(

b
r
𝑅

t
G
c
a

Optics Communications 574 (2025) 131203 
Fig. 15. Theoretical (red) and experimentally recorded (green) diffraction patterns at the optimal half-Talbot and Talbot planes between 𝜁min and 𝜁max, and in non-optimal
alf-Talbot and Talbot planes upon diffraction of an LG beam with variable 𝑙 and 𝑝 by an amplitude 2D binary grating with 𝜇 = 0.1 and 𝛬 = 0.15 mm. The other parameters are
he same as in Fig. 14. At the specified non-optimal half-Talbot distances (e.g., 𝑧 = 3𝑧𝑇 for 𝑙 = 2 and 𝑝 = 1, and 𝑧 = 5𝑧𝑇 for 𝑙 = 2 and 𝑝 = 2) and non-optimal Talbot distances
e.g., 𝑧 = 4𝑧𝑇 for 𝑙 = 2 and 𝑝 = 2), both the recorded experimental results and the predicted theoretical results exhibit low quality in the production of incident LG beam arrays.

Additionally, moving away from the optimal planes results in the absence of incident LG beam arrays.
r
F

i
g
w

m
t
o

Here 𝜌0 =
1

𝜋 𝑤0
. On comparing Eqs. (A.6) and (A.1), we observe that LG

eam profiles are self-Fourier transforms. We can then determine the
adial extension in the reciprocal space as 𝜌out = 𝑅out𝜌0 = 𝑅out

𝜋 𝑤0
where

out is a dimensionless parameter illustrated in Fig. 1(e). Therefore, the
angular spectrum bandwidth 𝛥𝜈 (transverse extension in the reciprocal
space) can be expressed as

𝛥𝜈 =
2𝑅out
𝜋 𝑤0

. (A.7)

Appendix B. Generation of LG beams with non-zero radial indices
via diffraction of a Gaussian beam through multi-circle phase-
shifted fork gratings

This appendix details the design of specialized fork gratings used
o generate LG beams with non-zero radial indices by diffraction a
aussian beam through them. These gratings, referred to as multi-
ircle phase-shifted fork gratings, consist of circular paths centered at
 common points. Half-period lateral displacements are implemented

on the grating lines, creating abrupt changes known as 𝜋-phase-shifted
areas (see Fig. B.16).
14 
The radii of the phase-shifted circles are determined based on the
adii of the dark rings in the intensity pattern of the desired LG beam.
or all the patterns depicted in Fig. B.16, based on the values of 𝑙 and

𝑝 of the desired LG beams, the radii of the phase-shifted circles are
chosen such that all the resulting LG beams have the same parameter
𝑤0 as described in Eq. (6).

To illustrate the details of the fork gratings both at the center and
n the phase-shifted areas, we considered a period of 0.5 mm for all
ratings. However, in the experiments, we used pure amplitude gratings
ith 10 lines/mm.

To generate LG beams with varying 𝑙 and 𝑝 parameters while
aintaining the same 𝑤0 parameter as shown in Eq. (6), we adjusted

he beam width of the incident Gaussian beam, 𝑤𝐺
in, based on empirical

bservations.
In this study, we utilized multi-circle 𝜋-phase-shifted fork gratings

to transform a Gaussian beam into LG beams characterized by a radial
index 𝑝 and a TC 𝑙. For each 𝑝 value, the beam’s radial profile exhibits
𝑝 + 2 radial nodes where the light intensity is zero: one on the optical
axis (𝑟 = 0), one at infinity (𝑟 = ∞), and 𝑝 intensity nodes located at
intermediate radial distances. This means there are 𝑝+ 1 intensity rings
for the generated LG beam.



P. Amiri et al.

o

T

r
𝑟

𝑤
𝜋

(
p
𝑙
d
a
g
i

Optics Communications 574 (2025) 131203 
Fig. B.16. Transmittances of various multi-circle phase-shifted fork gratings with sinusoidal profiles, characterized by central and intermediate radial phase discontinuities defined
by the parameters 𝑙 and 𝑝, respectively. Each grating has dimensions of 3 mm × 3 mm with a grating period of 𝑑 = 0.5mm. These gratings are designed for LG beams with a width
f 𝑤0 = 0.5mm.
s
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D

able B.1
Values of 𝑟(𝑙 ,𝑝)𝑘 for 𝑙 = 2 and 𝑙 = 5 with 𝑝 = 1 to 𝑝 = 3.

𝑙 = 2
𝑝 = 1 𝑝 = 2 𝑝 = 3
𝑟(2,1)1 =

√

6
2
𝑤0 𝑟(2,2)1 = 1𝑤0 𝑟(2,3)1 ≈ 0.87𝑤0

– 𝑟(2,2)2 =
√

3𝑤0 𝑟(2,3)2 ≈ 1.47𝑤0

– – 𝑟(2,3)3 ≈ 2.14𝑤0

𝑙 = 5
𝑝 = 1 𝑝 = 2 𝑝 = 3
𝑟(5,1)1 =

√

3𝑤0 𝑟(5,2)1 ≈ 1.48𝑤0 𝑟(5,3)1 ≈ 1.32𝑤0

– 𝑟(5,2)2 ≈ 2.20𝑤0 𝑟(5,3)2 ≈ 1.91𝑤0

– – 𝑟(5,3)3 ≈ 2.57𝑤0

At the optical axis, there is a phase singularity due to the fork form
of the grating, causing an intensity node there. The intensity node at
𝑟 = ∞ originates from the exponentially decreasing amplitude feature
of the Gaussian beam at large radii.

At the location of each intermediate node, a 𝜋 phase shift for the
fork grating lines is implemented to achieve the desired LG beam
pattern with 𝑝 + 1 intensity rings. For instance, we have the following
conditions:
- When 𝑝 = 0, there are no intermediate radial nodes, resulting in a
simple forked grating.
- For 𝑝 = 1, an intermediate radial node appears at 𝑟(𝑙 ,1)1 = 𝑤0

√

|𝑙|+1
2 ,

equiring a phase difference of 𝜋 between the inner and outer radii of
(𝑙 ,1)
1 = 𝑤0

√

|𝑙|+1
2 .

- For 𝑝 = 2, two intermediate radial nodes are present at 𝑟(𝑙 ,2)1 =

0

√

|𝑙|+2−
√

|𝑙|+2
2 and 𝑟(𝑙 ,2)2 = 𝑤0

√

|𝑙|+2+
√

|𝑙|+2
2 , with phase differences of

and 2𝜋, respectively.
In the general case for radial index 𝑝 and TC 𝑙, the radial nodes 𝑟(𝑙 ,𝑝)𝑘

𝑘 = 1, 2,… , 𝑝) are derived from the zeros of the Laguerre polynomials
resented in Eq. (6). Table B.1 presents typical values of 𝑟(𝑙 ,𝑝)𝑘 for various
and 𝑝 indices, expressed in terms of the width parameter 𝑤0 of the
esired LG beam. At nodes radii, a phase difference of (𝑘𝜋) must be
pplied, where 𝑘 denotes the intermediate node ring number. Thus, a
eneral relationship for the used multi-circle phase-shifted fork gratings

s expressed as follows:

15 
𝑡(𝑥, 𝑦) = 0.5
(

1 + cos
(2𝜋
𝑑

𝑥 + 𝑙 𝜃 + 𝛥𝜙(𝑟)
))

,

𝛥𝜙(𝑟) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

0, if 𝑝 = 0,
⎧

⎪

⎨

⎪

⎩

0, if 𝑟 < 𝑟(𝑙 ,1)1

𝜋 , if 𝑟 ≥ 𝑟(𝑙 ,1)1 ,
if 𝑝 = 1,

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0, if 𝑟 < 𝑟(𝑙 ,2)1

𝜋 , if 𝑟(𝑙 ,2)1 ≤ 𝑟 < 𝑟(𝑙 ,2)2

2𝜋 , if 𝑟 ≥ 𝑟(𝑙 ,2)2 ,

if 𝑝 = 2,

⋮

(B.1)

where 𝑑 is the period in the 𝑥-direction. The parameter 𝑙, repre-
enting the dislocation number at the grating center, corresponds to

the winding number or TC of the LG beam generated by the diffraction
of the incident Gaussian beam through the fork grating. The variable 𝜃
denotes the azimuth direction.

Appendix C. Supplementary data

See Supplement 1 for supporting content.
Supplementary material related to this article can be found online

t https://doi.org/10.1016/j.optcom.2024.131203.
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