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We investigate the inverse scattering problem for statistically homogeneous, isotropic random media under

conditions of strong fluctuations of optical wavefields.
density of the dielectric constant fluctuations in such media from scattering of partially coherent light.

We present a method for determining the spectral
The

method may find applications to a wide class of turbulent media such as the turbulent atmosphere and certain

turbulent plasmas where backscattering and depolarization effects are negligible.

America
OCIS codes:

The inverse scattering problem is one of the most
ubiquitous problems in science (see, for example,
Refs. 1-6). In the optical context, the problem of
reconstructing the dielectric susceptibility of a de-
terministic, weakly scattering medium was solved in
Ref. 7 within the accuracy of the first Born approxi-
mation. The generalization of the technique of that
reference to random media has met with difficulties,
however, owing to the nonuniqueness of reconstruction
even for weakly scattering media.®

To date, successful reconstruction schemes have
been developed either for weakly scattering, statis-
tically quasi-homogeneous random media® ! or for
strongly scattering turbid media in the diffusion
approximation.'? However, neither of these approxi-
mations can be applied to turbulent media under
strong fluctuation conditions (Ref. 13, Sect. 3.2).
Under these conditions, the fluctuations of the phase
and the amplitude of a wavefield are strong enough
so that neither the first Born approximation nor the
first Rytov approximation is valid. On the other
hand, light scattering is highly anisotropic, which
makes the use of the isotropic diffusion approximation
inappropriate.

In this Letter we present a solution to the inverse
scattering problem for statistically homogeneous,
isotropic random media in the strong fluctuation
regime. Our approach is based on the inversion of
a closed-form nonperturbative solution to the direct
scattering problem. We show that the use of partially
coherent, quasi-homogeneous incident beams makes
it possible to reconstruct the spatial spectrum of
the dielectric constant fluctuations in such media
from measurements of the radiant intensity of the
scattered light, thereby avoiding measurements of
field correlations. The new method is expected to be
applicable to gaseous turbulent media as well as to
turbulent plasma, where a direct calculation of the
spatial spectrum of homogeneous isotropic turbulence
from the hydrodynamic equations presents formidable
difficulties.™
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We begin by considering a beam, propagating
around the z direction into the half-space z > 0, where
there is a random medium. The random medium
may be specified by the fluctuation of the dielectric
constant e(p, z) = (e(p, z)) + €1(p, z) which is as-
sumed to be a statistically homogeneous and isotropic
random field. Suppose that the beam emerges from
the random medium after it has traveled the distance
L. In the absence of backscattering and depolariza-
tion effects,'® the cross-spectral density function of the
beam (Ref. 16, Sect. 2.4) at a pair at points p; and
p2 in the plane z = L is related to the cross-spectral
density of the incident beam at z = 0 by the expression
(Ref. 13, Sect. 3.2)

W(p,R,L) = [dQR’[dQ "WoR' — p'/2,R' + p'/2)
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Here Wy(p1, p2) is the cross-spectral density of the
incident field, # = w/c, where o is the frequency of
the field, p = p1 — p2 and R = (p; + p2)/2. Further,
D.(p) is the (suitably normalized) two-dimensional
structure function of the random process e1(p, 2),
which is related to the two-dimensional spectral
density ®.(K,) by the formula (Ref. 13, Sect. 3.1)

Dilp) =47 [ AKK.[1 = oK p)0KD). (@)

In Eq (2), the two-dimensional spectral density
®.(K,) is obtained from the three-dimensional one,

\/K2 + K2), by letting K, = 0. Due to the com-
plex1ty of expression (1), it is not suitable as a starting
point for the determination of the structure function
from scattering data. To solve this problem, we
consider the case of a partially coherent incident beam
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that is generated by a planar, quasi-homogeneous
source. The cross-spectral density of such a source
has the form (Ref. 16, Sect. 5.3)

WoR — p/2,R + p/2) = Io(R)po(p), 3)

where Ij(R) and uq(p) are the intensity and the spec-
tral degree of coherence of the field across the source,
respectively. The effective width o; of the intensity
distribution across such a source is much greater than
the spectral coherence length o. of the source. On
substituting from Eq. (3) into Eq. (1), one obtains, af-
ter straightforward algebra, the following expression
for the cross-spectral density of the beam in the exit
plane z = L:
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Here Iy(k) is a two-dimensional Fourier-transform of
the intensity Io(x) in the source plane z = 0, defined
as Iy(k) = [d%xIp(x)exp(—ik - x).

The analysis of Eq. (4) indicates that the behavior of
the integrand is determined by the relation among the
spectral coherence length o, of the incident beam, the
characteristic spatial scale A ~ L/koy, of the Fourier
transform of the incident intensity, and a character-
istic width of the exponential term at small spatial
scales of the order of o.. It follows from Eq. (2) that,
at small spatial scales, D.(p) ~ p2/lp, where Ipt ~
[o dK K3 @ (K, ), which is of the order of a typical dif-
fusion coefficient of the angular spread of the beam
in the random medium.!” The characteristic width of
the exponential term can then be estimated as 6 ~
(Ip/k2L)Y2. Tt can be concluded from these considera-
tions that Iy(x) can be approximated by the Dirac delta
function,

70[% (p - p’)} ~ (%)25(/) -p), (5)

provided that

L ) | Ip
k—0'1 < mm(o-c, 2L ) ) . ¥ oy. (6)

In physical terms, Eq. (5) means that in the paraxial
approximation and under the condition given by
Eq. (6), the field can be treated, to a good approxi-
mation, as a partially coherent plane wave. One
can readily satisfy this condition in a laboratory.
Consider, for example, a turbulent medium with
Ip ~ 10 cm, typical of atmospheric turbulence,”
and taking L ~ 1m, o7 ~ 10 cm, 2 ~ 10° cm™!, one
obtains o, >>10"* cm.
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On combining Eqs. (4) and (5) and recalling the def-
inition of the spectral degree of coherence (Ref. 16,
Sect. 5.3.1),

W(p1,p2,2) ,
W(p1, p1,2) VW (p2, p2,2)

one obtains, in the present case, for the spectral de-
gree of coherence of the light in the plane z = L the
expression

(7

w(p1, p2,2) = 7

2

u(p,L) = uo(p)eXP[—ﬂ

: me)}, (8)

which is a generalization of the corresponding result for

a fully coherent plane wave (Ref. 13, Sect. 3.2). Equa-
tion (8) can be inverted at once, giving
_ 4 2o(p) ‘ _

Here we have assumed, for simplicity, that at any
pair of points in the plane z = 0, the spectral degree
of coherence of the incident beam depends only on
the distance between the points, ie., uo = wolp).
Although this assumption is not necessary for
our purposes, the majority of partially coherent
sources generated in a laboratory satisfies this
condition.

Let us express the spectral density ®.(K,) in terms
of the structure function D.(p). For this purpose,
we apply to both sides of Eq. (2) the two-dimensional
Laplacian operator. Next, we multiply the resulting
equation by Jy(K,p) and use the Bessel equation
as well as the orthogonality relation for the Bessel
functions (Ref. 18, Sect. 2.6). We then obtain, after
some algebra, the following expression for the two-
dimensional spectral density:

1 * d dD,
47rKifo dpJO(KLP)E(p dp

Equations (9) and (10) are the main result of our
analysis. They may be used to determine the struc-
ture function and the two-dimensional spectrum of
the dielectric constant fluctuations from measure-
ments of the spectral degree of coherence of the
light beam that emerges from the random medium.
It also readily follows from the assumed statistical
isotropy of the medium that the three-dimensional
spectral density ®.(vK2 + K?) has the same func-
tional form as the two-dimensional spectral density
®.(K,). Therefore, it can be inferred from Egs. (9)
and (10) that the three-dimensional spectral density
of dielectric constant fluctuations is given by the
expression

(DG(KL) =

)’ (10)

1 oo
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Fig. 1.

where K = /K2 + K2, Itis only necessary to measure
the spectral degree of coherence of the incident and of
the scattered beams.

To determine the spectral degree of coherence of
the beam that has passed through a layer of thickness
L in the turbulent medium, we recall that the in-
cident beam was assumed to have been generated
by a quasi-homogeneous source. Further, the spa-
tial coherence of the beam can only decrease due
to multiple scattering events on propagation in the
layer of the turbulent medium. Thus a cross section
of the emerging beam can be viewed as a planar,
secondary, quasi-homogeneous source. Consider now
the field generated by such a source in the half-space
z > L. The radiant intensity J© of a field generated
by a quasi-homogeneous source is given by the formula
Ref. 16, Sect. 5.3.2)

Illustrating the notation.

JP(ks,) = (27k)?1(0,L)ju(ks,,L)cos® 6,  (12)

where a(f,L) and I(f,L) are the Fourier transforms
of the spectral degree of coherence and of the inten-
sity of the field in the plane z = L, respectively, s,
is a vectorial projection of the three-dimensional unit
outward vector § onto the source plane (see Fig. 1),
and |s,| = sin #. Since the field produced by the sec-
ondary source is assumed to propagate only close to
the z axis, one can make the approximation sin 6 = 6,
cos § = 1. Under these conditions, one obtains upon
taking the inverse Fourier transform in Eq. (12), the
following approximate expression for the spectral de-
gree of coherence of the source in terms of the radiant
intensity'®:

w(p,L) = [ ds. 5. Jo(ks. p) TP (ks ).

(2771?,)21 0,L)
(13)

Here we have made use of the isotropy of the spectral
degree of coherence of the source and performed the
angular integration.

Similarly, one can determine the spectral degree of
coherence of the incident beam by measuring its radi-
ant intensity J©. The spectral degree of coherence
can then be expressed as
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polp) = [ ds. s, Jo(ks.p) JO(ks.),

(14)
where, in the absence of absorption in the medium,
Iy(0) = 1(0,L).2° On combining Egs. (13) and (14), it
follows that

(27-rk)2lo (0)

wo(p) _ ffidsl SLJO(kSLp)J(O)(kSL).
wp,L)  [ods, s do(ks, p) JD(ks,)

Equations (11) and (15) represent the solution to the
problem of determining the spectral density of dielec-
tric constant fluctuations in a random medium under
strong fluctuation conditions.

(15)
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