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NOTES AND DISCUSSIONS

An elementary derivation of the harmonic oscillator propagator
L. Moriconia)

Instituto de Fı´sica, Universidade Federal do Rio de Janeiro
C.P. 68528, Rio de Janeiro, RJ—21945-970, Brazil

~Received 20 February 2004; accepted 5 March 2004!

The harmonic oscillator propagator is found straightforwardly from the free particle propagator
within the imaginary-time Feynman path integral formalism. The derivation is simple, and requires
only elementary mathematical manipulations and no clever use of Hermite polynomials,
annihilation and creation operators, cumbersome determinant evaluations, or involved
algebra. ©2004 American Association of Physics Teachers.
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Many believe that the evaluation of the simple harmo
oscillator propagator is tricky. Previous arguments1–5 con-
firm this belief to a certain extent. The aim of this note is
present an alternative and simple derivation of the imagin
time harmonic oscillator propagator1 ~known as the harmonic
oscillator density matrix in the statistical physics context!,

ZHO5E Dx expS 2E
0

T

dtS m

2
ẋ21

mv2

2
x2D D . ~1!

All one needs to know to follow the proof is the standa
expression for the imaginary-time free particle propagato1
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where the functional integration measure is defined as
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A m

2peN
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The time intervalT in Eq. ~3! has been sliced intoN pieces,
not necessarily equally, with sizese i[t i2t i 21 .

Observe that Eq.~1! can be rewritten as
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If we substitutex(t)[z(t)exp(2vt) in Eq. ~4!, we obtain

ZHO5expS mv

2
~xT

22x0
2! D S )

i 51

N21

exp~2vt i !D
3E Dz expS 2E

0

T

dt
m

2
exp~22vt !ż2D . ~5!
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The exponential factor exp(22vt) in Eq. ~5! can be absorbed
by time reparametrization. Lett* [exp(2vt)/2v1c, wherec
is an unimportant arbitrary constant. From Eq.~5!, we have

ZHO5expS mv

2
~xT

22x0
2!1

vT

2 D
3E Dz* expS 2E

ta

tb
dt*

m

2
~ ż* !2D , ~6!

where z* (t* )5z(t), ta51/2v1c, and tb5exp(2vT)/2v
1c. To obtain Eq.~6!, it is necessary to take into accou
that e i* [t i* 2t i 21* 5@exp(2vti)2exp(2vti21)#/2v5e i exp

3(2v t̄ i), where t̄ i[(t i1t i 21)/2, ~Ref. 6! so that
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If we substitute the free particle expression~2! into Eq.~6!
and use the definitions ofta , tb , andz* (t* ), we obtain
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which is the well-known expression for the imaginary-tim
harmonic oscillator propagator.1 The quantum mechanica
propagator can be immediately found from Eq.~8! by the
analytical mappingT→ iT.1
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I present a Fourier transform approach to the prob
harmonic oscillator. The simplicity of the method m
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The quantum harmonic oscillator is one of the most ub
uitous models in physics. Quantum oscillator models pla
prominent role in many branches of physics including qu
tum optics and solid state theory, to mention but a few
amples. One of the most important characteristics of a o
dimensional harmonic oscillator is its energy eigensta
which can be described in terms of their coordinate sp
wave functionscn(x):1,2

d2cn

dX2 1
2M

\2 S En2
MV2X2

2 Dcn50. ~1!

Here X is a spatial coordinate,En is the energy of thenth
stationary state~eigenstate! of the oscillator, andM and V
are the mass and the frequency of the oscillator, respectiv

In many quantum mechanics textbooks1,2 Eq. ~1! is solved
with the help of the Sommerfeld polynomial approach.3 Not
only is the latter unwieldy, but it often makes the stude
wonder about the ‘‘magical’’ way the corresponding ser
solution terminates only for certain integer values of t
energy.4 Of course, there exists an alternative algebraic
proach ~see, for example, Ref. 5! which is free from this
shortcoming, but it requires familiarity with operator algeb
in Fock space.

In this note, I present yet another approach to the sa
problem that relies on a simple Fourier transformation. B
sides its simplicity, the proposed method provides a us
link between the material that students typically learn in
course on mathematical physics and an important phys
problem.
-
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I begin by introducing the dimensionless variables:e
5En /\V and x5X/ l 0 , where l 05(\/MV)1/2 is a charac-
teristic spatial scale associated with the ground state w
function of the oscillator. Equation~1! can then be written in
the form

d2c

dx2 1~2e2x2!c50, ~2!

where I have omitted, for brevity, the subscriptn on the
wave function. It is readily seen from Eq.~2! that if c(x) is
a solution, so isc(2x). Consequently, the wave function
describing the stationary states can be chosen to be e
even or odd. I will assume in the following that all eige
functions have a definite parity.

By substitutingc(x)5f(x)ex2/2 into Eq. ~2!, I obtain

f912xf81~2e11!f50, ~3!

where the prime denotes a derivative with respect tox. In
order to solve Eq.~3!, I consider a Fourier transform off:

f̃~k![E
2`

1`

dx f~x!e2 ikx, ~4!

which exists for any normalizable, that is, square-integra
wave function of the system. The inverse Fourier transfo
is then defined as

f~x![E
2`

1` dk

2p
f̃~k!eikx. ~5!

It follows from Eq. ~5! that
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f9~x!52E
2`

1` dk

2p
k2f̃~k!eikx, ~6!

and

xf8~x!5E
2`

1` dk

2p
kf̃~k!

d

dk
~eikx!

52E
2`

1` dk

2p
eikx

d

dk
@kf̃~k!#. ~7!

Equation ~7! was obtained using integration by parts a
assuming thatf̃→0 ask→`. By substituting Eqs.~5!–~7!
into Eq.~3!, I obtain after some minor algebra the first-ord
differential equation

2k
df̃

dk
52k2f̃1~2e21!f̃, ~8!

which can be integrated at once with the result

f̃~k!5Ck(2e21)/2e2k2/4. ~9!

HereC is an arbitrary constant. It readily follows from Eq
~9! that

f~x!5CE
2`

1`

dk k(2e21)/2e2k2/4eikx. ~10!

Hence, the formal solution for the eigenfunction of the h
monic oscillator is

c~x!5Cex2/2E
2`

1`

dk k(2e21)/2e2k2/4eikx. ~11!

Recall that the eigenfunctions are either even or odd,
is,

c~2x!56c~x!. ~12!

It then follows from Eq.~11! that

c~2x!5Cex2/2E
2`

1`

dk k(2e21)/2e2k2/4e2 ikx

5Cex2/2E
2`

1`

dk~2k!(2e21)/2e2k2/4eikx, ~13!

where the right-hand side of Eq.~13! was obtained by mak
ing the change of variablesk→2k. It can be inferred from
Eqs. ~11! to ~13! that the necessary and sufficient conditi
for the eigenfunctions to have a definite parity can be
pressed as

~21!(2e21)/2561. ~14!

It follows that the allowed values of the energyen must be
quantized in terms of the nonnegative integern, (n
50,1,2,3,...), that is,
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It is seen from Eqs.~11! and ~15! that negative values ofn
must be excluded because they do not lead to the norm
able eigenfunctionscn . Equation ~15! is the celebrated
quantization condition for the energy levels of the harmo
oscillator.

By using Eq.~15!, one can cast Eq.~11! into the form

cn~x!5Cnex2/2E
2`

1`

dk kne2k2/4eikx. ~16!

Equation~16! can be represented as

cn~x!5Cnex2/2
dn

d~ ix !n E
2`

1`

dk e2k2/4eikx. ~17!

The integral in Eq.~17! can be evaluated using the formul

E
2`

1`

dx e2x2/4eiax5A4pe2a2
. ~18!

On redefining the normalization constantCn , I arrive at the
result

cn~x!5~21!nCne2x2/2ex2 dn

dxn e2x2
, ~19!

and finally,

cn~x!5Cne2x2/2Hn~x!. ~20!

Here I have introduced the Hermite polynomials by the e
pression

Hn~x![~21!nex2 dn

dxn e2x2
. ~21!

Equations~15!, ~20!, and~21! represent a complete solutio
for the stationary states of a one-dimensional quantum
monic oscillator.

In summary, I have presented an alternative method
finding the stationary states of a quantum mechanical h
monic oscillator which relies on the properties of Four
transforms. The proposed approach makes it possible to
termine the eigenfunctions of the oscillator with remarka
simplicity, and it provides valuable insight into the origin o
the quantization condition for the energies of the eigensta

a!Electronic mail: ponos@pas.rochester.edu
1L. Schiff, Quantum Mechanics~McGraw–Hill, New York, 1968!, 3rd ed.
2C. Cohen-Tannoudji, B. Diu, and F. Laloe¨, Quantum Mechanics~Wiley-
Interscience, New York, 1977!, Vol. I.

3A. Sommerfeld,Wave Mechanics~Academic, New York, 1929!.
4In reality, of course, the ‘‘magical’’ termination of the series solution f
half-integer values of the energy is directly related to the normalizat
condition for the wave functions. However, this connection often is o
scure to the students because it involves rather complicated mathem

5J. J. Sakurai,Modern Quantum Mechanics~Addison–Wesley, Reading
MA, 1994!.
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Erratum: ‘‘What is a state in quantum mechanics?’’
†Am. J. Phys. 72 „3…, 348–350 „2004…‡

Roger G. Newtona)

Department of Physics, Indiana University, Bloomington, Indiana 47405-7000

@DOI: 10.1119/1.1710083#

In Eqs.~2!, ~3!, ~4!, and~5! all the squares in the denominators should be replaced by first powers. Note also that s
the left-hand bars in expressions such asu~C, C!u in these equations are missing.~All the vertical bars on these norms may
course be omitted.! The statesC1 andC2 are assumed to be normalized.

I am indebted to Eric Chisolm for calling my attention to these errors.
a!Electronic mail: newton@indiana.edu

Gasoline Engine Half Model. This half model of a four-cycle gasoline engine was made by the Chicago Apparatus Co., and is listed at $25.00 in
catalogue. The large, heavy model is in the Greenslade collection and is 37.5 cm high. The words ‘‘intake’’ and ‘‘exhaust’’ are cast into the correding
valve chambers, and the poppet valves themselves are operated by eccentrics cast into the two large gear wheels. The intake eccentric on the leftctuates
a make-and-break contact that causes the light bulb at the top of the cylinder to flash, indicating the operation of the spark plug. On either side of tylinder
are chambers with the word ‘‘water’’ cast into them, indicating the jacket for cooling water.~Photograph and notes by Thomas B. Greenslade, Jr., Ken
College!
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