AMERICAN
JOURNAL

ﬁlﬁ)utanou OJPHYSICS
A —— -

Quantum harmonic oscillator revisited: A Fourier transform approach
Sergey A. Ponomarenko

Citation: American Journal of Physics 72, 1259 (2004); doi: 10.1119/1.1677395

View online: http://dx.doi.org/10.1119/1.1677395

View Table of Contents: http://scitation.aip.org/content/aapt/journal/ajp/72/9?ver=pdfcov
Published by the American Association of Physics Teachers

Advertisement:

Teach NMR and MRI

Hands-on education with Terranova-MRI
Includes complete student guide with
12 experiments and online videos.

For more details, click this link:
www.magritek.com/terranova



http://scitation.aip.org/content/aapt/journal/ajp?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/test.int.aip.org/adtest/L23/131484328/x01/AIP/Magritek_AJPCovAd_1640x440_10_16thru10_29_2013/mag_ad_MRI.jpg/7744715775302b784f4d774142526b39?x
http://scitation.aip.org/search?value1=Sergey+A.+Ponomarenko&option1=author
http://scitation.aip.org/content/aapt/journal/ajp?ver=pdfcov
http://dx.doi.org/10.1119/1.1677395
http://scitation.aip.org/content/aapt/journal/ajp/72/9?ver=pdfcov
http://scitation.aip.org/content/aapt?ver=pdfcov

NOTES AND DISCUSSIONS

An elementary derivation of the harmonic oscillator propagator

L. Moriconi®
Instituto de Fsica, Universidade Federal do Rio de Janeiro
C.P. 68528, Rio de Janeiro, RJ—21945-970, Brazil

(Received 20 February 2004; accepted 5 March 2004

The harmonic oscillator propagator is found straightforwardly from the free particle propagator
within the imaginary-time Feynman path integral formalism. The derivation is simple, and requires
only elementary mathematical manipulations and no clever use of Hermite polynomials,
annihilation and creation operators, cumbersome determinant evaluations, or involved
algebra. ©2004 American Association of Physics Teachers.
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Many believe that the evaluation of the simple harmonicThe exponential factor exp2wt) in Eq. (5) can be absorbed
oscillator propagator is tricky. Previous argumemntscon- by time reparametrization. L&t =exp(20t)/2w + ¢, wherec
firm this belief to a certain extent. The aim of this note is tOis an unimportant arbitrary constant. From Eﬁ)ﬂ we have
present an alternative and simple derivation of the imaginary
time harmonic oscillator propagataknown as the harmonic
oscillator density matrix in the statistical physics conext
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The time intervalT in Eq. (3) has been sliced inthl pieces, = N-1 -
not necessarily equally, with sizes_zti—ti,l. = A\ /m H exp(— wt;) \ /mdzi
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If we substitutex(t)=z(t)exp(—wt) in Eq. (4), we obtain

_ r{wT)D . .
mo , N-1 =eX - |DZ". 7
Zwo=exp - (xi—x0) || 11 exp(—wt)
xf Dzexg — detTqu_zwt)zz _ (5) If we substitute the free particle expressi@into Eq.(6)
o 2 and use the definitions af, t,, andz* (t*), we obtain
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Quantum harmonic oscillator revisited: A Fourier transform approach

Sergey A. Ponomarenko®
Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627

(Received 13 October 2003; accepted 23 January)2004

| present a Fourier transform approach to the problem of finding the stationary states of a quantum
harmonic oscillator. The simplicity of the method may make it a desirable substitute for the rather
cumbersome polynomial approach to the problem which is commonly used in the standard graduate
quantum mechanics textbooks. @04 American Association of Physics Teachers.
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The quantum harmonic oscillator is one of the most ubig- | begin by introducing the dimensionless variables:
uitous models in physics. Quantum oscillator models play a=E, /40 andx=X/l,, wherel,=(%/MQ)'? is a charac-
prominent role in many branches of physics including quanteristic spatial scale associated with the ground state wave

tum optics and solid state theory, to mention but a few exfunction of the oscillator. Equatiofi) can then be written in
amples. One of the most important characteristics of a onehe form

dimensional harmonic oscillator is its energy eigenstates, "
which can be descrfgxzed in terms of their coordinate space  +(2e—x2) =0, @)
wave functionsi,(x): ™~ dx

5 oo where | have omitted, for brevity, the subscripton the
M+ Z_M( ~ Ma“X ) _o (1)  Wave function. It is readily seen from E@) that if y(x) is
dx? = a2\ " 2 now a solution, so isy(—x). Consequently, the wave functions
describing the stationary states can be chosen to be either

Here X is a spatial coordinate,, is the energy of theath ~ €ven or odd. I will assume in the following that all eigen-
stationary statdeigenstatgof the oscillator, andM and(y ~ functions have a definite parity.
are the mass and the frequency of theb%scillator, respectively. By substitutingy(x) = ¢(x)e€*"? into Eq. (2), | obtain

In many quantum mechanics textbook&q. (1) is solved " , _
with the help of the Sommerfeld polynomial approddkot ¢t 2xg’ +(26+1)$=0, ©
only is the latter unwieldy, but it often makes the studentwhere the prime denotes a derivative with respeck.tdn
wonder about the “magical” way the corresponding seriesorder to solve Eq(3), | consider a Fourier transform @f:
solution terminates only for certain integer values of the .
energy! Of course, there exists an alternative algebraic ap- a(k)EJ dx p(x)e K, (4)
proach (see, for example, Ref.)5which is free from this —o

shortcoming, but it requires familiarity with operator algebraWhiCh exists for any normalizable, that is, square-integrable

n Iiofhkissﬂ?)?ee. | oresent vet another anproach to the samyave function of the system. The inverse Fourier transform
1p y pp S then defined as

problem that relies on a simple Fourier transformation. Be-

sides its simplicity, the proposed method provides a useful +oo
link between the material that students typically learn in a X)Ef
course on mathematical physics and an important physical
problem. It follows from Eg. (5) that

dk~ ikx
5 Bk (5

— o0
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, +=dk o~ o e,=n+1/2. (15
po0-— [ S Kmer ©
It is seen from Eqgs(11) and(15) that negative values of
and must be excluded because they do not lead to the normaliz-
able eigenfunctions),. Equation (15) is the celebrated
+odk - d . quantization condition for the energy levels of the harmonic
X¢'(X)=f Ek¢(k)d—k(e'kx) oscillator.
- By using Eq.(15), one can cast Ed11) into the form
[y Y
=- —e . +oo ,
o 27T dk ‘pn(x) _ Cnex2/2J' dk kne—k2/4e|kx_ (16)

Equation (7) was obtained using integration by parts and

assuming thath—0 ask—o. By substituting Eqs(5)—(7) ~ Equation(16) can be represented as
into Eq. (3), | obtain after some minor algebra the first-order

differential equation d" +oo ,
lﬂn(X):Cne"Z’ZWf dk e—k2/4e|kx_ (17)
d~ B B — 00
2k—¢= —K?p+(2e—1)¢, (8 . . .
dk The integral in Eq(17) can be evaluated using the formula
which can be integrated at once with the result too
J dx e *Mgiax= \[4re 2", (18
8( k) — Ck(257 l)/2ef k2/4_ (9) -®
Here C is an arbitrary constant. It readily follows from Eq. ?er;urﬁdefining the normalization constady, | arrive at the
(9) that
A 2e—1)12—k2/4ikx - ne oz 3
d(X)=C | dk K2 D2g=k4gikx, (10) I(x)=(=1)"Cre " "e" 5", (19
Hence, the formal solution for the eigenfunction of the har-and finally,
monic oscillator is
. Un(X)=Cre *PHq(X). (20
1//(X)=Celezf dk K2e=1)2g—Klagikx (11)
— Here | have introduced the Hermite polynomials by the ex-
pression
Recall that the eigenfunctions are either even or odd, that
iS, 2 d" 2
Hy(x)=(—1)"eX me‘x . (21
P(—=X)=Eh(X). (12
It then follows from Eq.(11) that Equations(15), (20), and(21) represent a complete solution

for the stationary states of a one-dimensional quantum har-
oo monic oscillator.
¢(—x):c9><2/2f dk K2e~ 12— Klag—ikx In summary, | have presented an alternative method of
—o finding the stationary states of a quantum mechanical har-
o monic oscillator which relies on the properties of Fourier
=Cex2’2f dk(_k)(ZE—l)/ze—k2/4eikx, (13)  transforms. The proposed approach makes it possible to de-
—o termine the eigenfunctions of the oscillator with remarkable
simplicity, and it provides valuable insight into the origin of
where the right-hand side of EGL3) was obtained by mak- the quantization condition for the energies of the eigenstates.
ing the change of variablds— —k. It can be inferred from
Egs.(11) to (13) that the necessary and sufficient condition ?Electronic mail: ponos@pas.rochester.edu

for the eigenfunctions to have a definite parity can be ex-,L- Schiff, Quantum MechanicgMcGraw—Hill, New York, 1968, 3rd ed.
pressed as C. Cohen-Tannoudji, B. Diu, and F. Lalo®uantum Mechanic$Wiley-

Interscience, New York, 197,7Vol. I.

3A. Sommerfeld Wave MechanicéAcademic, New York, 1929

(— 1)(26_1)/2= +1. (14 “In reality, of course, the “magical” termination of the series solution for
half-integer values of the energy is directly related to the normalization

It follows that the allowed values of the energy must be condition for the wave functions. However, this connection often is ob-
scure to the students because it involves rather complicated mathematics.

quantized in terms of the nonnegative integer (n 8J. J. SakuraiModern Quantum MechanicgAddison—Wesley, Reading,
=0,1,2,3,..), that is, MA, 1994).
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Erratum: “What is a state in quantum mechanics?”
[Am. J. Phys. 72 (3), 348—350 (2004)]

Roger G. Newton?
Department of Physics, Indiana University, Bloomington, Indiana 47405-7000
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In Egs.(2), (3), (4), and(5) all the squares in the denominators should be replaced by first powers. Note also that some of
the left-hand bars in expressions such(ds V)| in these equations are missir{@ll the vertical bars on these norms may of
course be omitteg The statesV; and¥, are assumed to be normalized.

| am indebted to Eric Chisolm for calling my attention to these errors.

@E|ectronic mail: newton@indiana.edu
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Gasoline Engine Half Model. This half model of a four-cycle gasoline engine was made by the Chicago Apparatus Co., and is listed at $25.00 in the 1936
catalogue. The large, heavy model is in the Greenslade collection and is 37.5 cm high. The words “intake” and “exhaust” are cast into thedamgrespon
valve chambers, and the poppet valves themselves are operated by eccentrics cast into the two large gear wheels. The intake eccentric orcthatést also a
a make-and-break contact that causes the light bulb at the top of the cylinder to flash, indicating the operation of the spark plug. On either githelef the ¢

are chambers with the word “water” cast into them, indicating the jacket for cooling w@kotograph and notes by Thomas B. Greenslade, Jr., Kenyon
College
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