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Correlation matrix of a completely polarized, statistically
stationary electromagnetic field
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It is shown that, for a 3 3 3 correlation matrix Wij �r, r, v�, �i, j � x, y, z� of the electric vector of a random,
stationary electromagnetic field to represent a field that is completely polarized at a point r and frequency
v, each element of the matrix must factorize. More precisely, a necessary and sufficient condition for the
correlation matrix to represent a fully polarized field at a point r is that the matrix has the form Wij �r, r, v� �
E�
i �r, v�Ej �r, v�, where Ei�r, v� �i � x, y, z� are deterministic functions, i.e., that all pairs of the Cartesian

components of the electric field at a point r and frequency v are completely correlated. © 2004 Optical
Society of America

OCIS codes: 260.5430, 030.6600.
A problem of considerable current interest, especially
in the area of near-field optics, is the determination
of the state of polarization of a randomly f luctuat-
ing electromagnetic field close to a source or to a
scattering body. In these regions the f ield is not
beamlike. The problem is nontrivial, because even
the question of whether the concept of the degree of
polarization of a general (i.e., not beamlike) random
electromagnetic f ield is meaningful has not as yet
been clarified, as is evident from contradictory claims
about this question made in the literature (see, for
example, Refs. 1–3). To clarify this problem it is
necessary to know how to represent a fully polarized
random statistically stationary electromagnetic field.
The purpose of this Letter is to answer this particular
question. In a subsequent publication, we will show
that the elucidation of this question is crucial to
the understanding of whether, and in what sense,
the concept of a degree of polarization of an arbi-
trary, statistically stationary electromagnetic f ield is
meaningful.

Let us begin with some remarks about polarization
properties of random electromagnetic beams that prop-
agate close to the z direction. The electric vector of a
beamlike f ield is said to be completely polarized at a
point r if the end point of the electric vector at that
point moves with increasing time on an ellipse (which
of course may degenerate into a straight line or a circle
in special cases). It is worth noting that the f ield does
not have to be monochromatic to be fully polarized.
All that is necessary is that the ratio Ey�Ex of two
mutually orthogonal components of the electric vector
perpendicular to the direction of propagation is con-
stant (see, for example, Ref. 4, Sect. 6.3.2).
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Expressed in a different though equivalent way,
the electric vector of a random statistically station-
ary electromagnetic beam propagating close to the
z direction is completely polarized at a point r, and
frequency v, if its spectral degree of correlation,
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is unimodular, i.e., if jmxy �r, v�j � 1. In Eq. (1),
Ex�r, v� and Ey

≥
r, v

¥
are members of a statistical

ensemble of space-dependent parts of monochromatic
realizations Ex�r, v�exp�2ivt�, Ey�r, v�exp�2ivt�
that represent the components of the random complex
electric f ield at a point r and at frequency v, and
the angle brackets denote the average, taken over
an ensemble of realizations of the electric field (see
Ref. 4, Sect. 4.7.1). The constraint jmxy �r, v�j � 1
implies that the components Ex�r, v� and Ey�r, v�
are completely correlated.

Let us now turn our attention to a random elec-
tromagnetic f ield that is not beamlike. It is known
that any monochromatic field, whether or not it is
beamlike, is necessarily polarized at each point, but
the polarization ellipses may have a different shape,
and their planes may have different orientations at
different points (Ref. 5, Sect. 1.4.3). Actually, as
already noted, the field at some point r need not be
monochromatic to be fully polarized at that point. In
the space–frequency representation that we are now
using, this can be seen from the following argument.6
© 2004 Optical Society of America
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Let us consider a statistical ensemble �Ei�r, v�� �i �
x, y, z� (see Ref. 4, Sect. 4.7.2) of the electric f ield at
point r and frequency v. Suppose that

Ei�r,v� � ei�r, v�U �r,v� , (2)

where ei�r, v� are deterministic functions and U �r, v�
is a random function. In other words, ei is the same
for each member of the ensemble but U differs from
member to member of the Ei ensemble.

It follows at once from Eq. (2) that the ratio

Ei�r,v�
Ej �r,v�

�
ei�r,v�
ei�r,v�

(3)

is deterministic. Two fields for which the ratios
Ei�Ej �i � x, y, z� have the same (deterministic) value
may be said to be statistically similar. Using this
deterministic relationship between the vector compo-
nents, we may define an equivalent electromagnetic
field

Ei�r,v�exp�ivt� � ei�r, v� ��jU �r,v�j2��1�2exp�2ivt� ,

(4)

that, just as a monochromatic field, will necessarily be
fully polarized at each point; i.e., the end point of the
electric field will move on an ellipse.

Let us now consider any statistically stationary field.
In general such a field will, of course, not be fully polar-
ized. We may characterize the second-order correla-
tion properties of its f luctuating electric f ield at points
r1 and r2 and frequency v by a 3 3 3 cross-spectral
density matrix (see Ref. 4, Sect. 6.6.1):

Wij �r1,r2,v� � �E�
i �r1,v�Ej �r2,v�� , (5)

where the subscripts i and j label the Cartesian com-
ponents of the (generally complex) electric f ield. Since
we are interested in the state of polarization of the f ield
at some particular point represented by a position vec-
tor r and frequency v, we need only consider the ma-
trix (5) for r1 � r2 � r.

We will now establish the following theorem: A nec-
essary and sufficient condition for the electric vector
of a statistically stationary electromagnetic field to be
completely polarized at a point r is that each element
of the matrix Wij �r, r, v� factorizes in the form

Wij �r, r,v� � E�
i �r,v�Ej �r,v� . (6)

This factorization implies that the Cartesian compo-
nents Ei�r, v�, Ej �r, v� are completely correlated for
all i, j � x, y, z. To prove that such factorization is a
necessary condition for the f ield to be completely po-
larized, we start from the ensemble representation of
a fully polarized field. In view of Eq. (4), the cross-
spectral density matrix of such a field is
Wij �r, r,v� � �E�
i �r1,v�Ej �r2,v��

� �ei��r,v�U��r,v�ej �r,v�U �r,v��

� �ei��r,v�ej �r,v� �U��r,v�U �r,v��

� E�
i �r,v�Ej �r,v� , (7)

say. Evidently such a factorization of all the elements
of the correlation matrix expresses a necessary condi-
tion for complete polarization of the electric f ield at a
point r and frequency v.

To demonstrate that the factorization is also a
sufficient condition we note that because the matrix
Wij �r, r ,v� is a nonnegative definite Hermitian
matrix (Ref. 4, Sect. 6.6.1), it can be diagonalized by
a unitary transformation and, moreover, its eigenval-
ues, l, are necessarily real and nonnegative. The
eigenvalues are solutions of the equation

det�$W �r, r,v� 2 lI � � 0 , (8)

where det denotes the determinant and I is the unit
matrix. On substituting from Eq. (6) into Eq. (8) we
find that

�jExj2 2 l� ��jEy j2 2 l� �jEzj2 2 l� 2 jEy j2 jEzj2�

2 E�
x Ey �E�

y Ex�jEzj2 2 l� 2 jEzj2E�
y Ex�

1 E�
x Ez�jEy j2E�

z Ex 2 E�
z Ex�jEy j2 2 l�� � 0 , (9)

where of course the arguments of Ex, Ey , and Ez are
functions of r and v.

After lengthy but straightforward calculations,
Eq. (9) can be shown to imply that

l2�l 2 Tr
$
W �r, rv�� � 0 , (10)

where Tr denotes the trace. Equation (10) shows that
the matrix

$
W �r, r, v� has only one nonzero eigenvalue

that is proportional to the average electric energy den-
sity of the field at point r because

l1 � Tr $W �r, r,v� � �E�
x �r,v�Ex�r,v��

1 �E�
y �r,v�Ey�r,v�� 1 �E�

z �r,v�Ez�r,v�� . (11)

To explicitly determine the state of polarization rep-
resented by a cross-spectral density matrix each ele-
ment of which factorizes, it is necessary to transform
(rotate) the coordinate system appropriately. We now
perform this rotation.

In general, the electric field at point r will be ellip-
tically polarized, and the eigenvector v1 corresponding
to the nonzero eigenvalue l1 is a complex vector.
Just as the eigenvalue is associated with the electric
energy density of the field at the point, the eigenvector
v1 can be associated with the equivalent electric f ield
given by Eq. (4). Up to a constant, v1 � �E�

x , E�
y , E�

z �T ,
where T denotes the transpose, the vector is just the
complex conjugate of the equivalent electric f ield
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at point r. A treatment similar to that given in
Sect. 1.4.2 of Ref. 5 gives the polarization ellipse of
the electric f ield at point r. We provide an equivalent
argument through real rotations defined in terms of
the component of the eigenvector v1 (equivalently, in
terms of the electric f ield components). This rotation
is given by a matrix of the form

R �

2
4 cos�u� 0 sin�u�

0 1 0
2sin�u� 0 2cos�u�

3
5

2
4 cos�a� sin�a� 0

2sin�a� cos�a� 0
0 0 1

3
5 ,

(12)

where the angles of rotation are

u�r,v� � arctan
∑

Ez�r,v�
Ex�r,v�cos�a� 1 Ey �r,v�sin�a�

∏
,

(13a)

a�r,v� � arctan
Ω
jEx�r,v�j sin�fz�r,v� 2 fx�r,v��
jEy �r,v�j sin�fy�r,v� 2 fz�r,v��

æ
.

(13b)

The cross-spectral density matrix in the new coordi-
nate system is
f$W �r,r,v� � R
$
W �r, r,v�R21 �

2
664

E�
x0�r,v� Ex0�r,v� E�

x0 �r,v� Ey 0 �r,v� E�
x0�r,v� Ez0�r,v�

E�
y 0 �r,v� Ex0 �r,v� E�

y 0 �r,v� Ey 0 �r,v� E�
y �r,v� Ez0�r,v�

E�
z0�r,v� Ex0�r,v� E�

z0�r,v� Ey 0 �r,v� E�
z �r,v� Ez0�r,v�

3
775 , (14)
where

Ex0�r,v� � Ex�r,v�cos�u�cos�a�

1Ey�r,v�cos�u�sin�a� 2 Ez�r,v�sin�u� , (15a)

Ey 0 �r,v� � 2Ex�r,v�sin�a� 1 Ey �r,v�cos�a� , (15b)

Ez0�r,v� � 2Ex�r,v�sin�u�cos�a�

2Ey�r,v�sin�u�sin�a� 1 Ez�r,v�cos�u� . (15c)

On substituting for u and a from Eq. (13) into
Eq. (15), one finds that Ez0�r,v� � 0, which im-
plies that the electric f ield is confined to the x0, y 0

plane. It should be noted that, while the ratio
Ez�r,v���Ex�r, v�cos�a� 1 Ey �r, v�sin�a�� appears to be
a complex quantity, its imaginary component is iden-
tically zero, and hence both u and a are real angles.
We have thus reduced the matrix representation of the
three-dimensional f ield at a point r to that of a locally
two-dimensional f ield represented by the matrix

f$
W �r,r,v� �

2
664 E�

x0�r,v�Ex0�r,v� E�
x0�r,v�Ey 0 �r,v� 0

E�
y 0�r,v�Ex0�r,v� E�

y 0�r,v�Ey 0 �r,v� 0
0 0 0

3
775 ,

(16)

The 2 3 2 submatrix in Eq. (16), with the factorized
terms, will be recognized as a correlation matrix of
a completely polarized field conf ined to the x0, y 0

plane through point r (Ref. 4, Sect. 6.3.2). We have
thus demonstrated the suff iciency condition, showing
that factorization of all elements implies a fully
polarized field. In the degenerate case when the
field is linearly polarized, the three components of
the eigenvector v1 will have the same phase. In this
case angle a takes on the value a � arctan�jExj�jEy j�,
which is just the limiting case of a with
fz 2 fx � fy 2 fz.

Thus, we have proved that a necessary and suffi-
cient condition for an electric cross-spectral density
matrix to represent a completely polarized field at a
point r and frequency v is that each element of
the matrix at r1 � r2 � r factorizes in the form
Wij �r, r,v� � E�

i �r, v�Ej �r, v�.
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