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We show analytically that bright and dark spatial self-similar waves can propagate in graded-index
amplifiers exhibiting self-focusing or self-defocusing Kerr nonlinearities. The intensity profiles of the
novel waves are identical with those of fundamental bright or dark spatial solitons supported by
homogeneous passive waveguides with the same type of nonlinearity. Thus, we reveal a previously
unnoticed connection between spatial solitons and self-similar waves. We also suggest that the discovered
self-similar waves can be used in a promising scheme for the amplification and focusing of spatial solitons
in future all-optical networks.
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The sheer complexity of nonlinear physical systems,
which are ubiquitous in nature, has motivated researchers
to explore hidden symmetries and order within such sys-
tems. In many cases, self-similarity of a complex nonlinear
system points to the presence of an internal order, and it is a
key to gaining physical insight about its evolution [1]. In
particular, the self-similar evolution of a nonlinear wave
implies that the wave profile remains unchanged and its
amplitude and width simply scale with time or propagation
distance.

Self-similar behavior of nonlinear waves has always
been one of the central themes in many fields of physics,
ranging from hydrodynamics and turbulence [1,2] through
plasma physics [3] to nuclear physics [1]. Surprisingly,
however, it has only lately attracted the attention of non-
linear optics community, and a relatively few optical self-
similar phenomena have been investigated to date [4–13].
In particular, exact self-similar solitary waves have been
found in optical fibers whose dispersion, nonlinearity and
gain profile are allowed to change with the propagation
distance, but the functional forms of these parameters
cannot be chosen independently [11,12]. Such self-similar
solitary waves were shown to have many features similar to
ideal solitons [11]. More recently, these results were gen-
eralized to obtain exact matter-wave solitons in harmoni-
cally trapped Bose-Einstein condensates with the inter-
action strength and the trapping potential changing with
time in a prescribed fashion [13].

In this Letter, we present exact analytical solutions
describing spatial bright and dark self-similar waves, as
well as the trains of such waves propagating inside planar,
graded-index waveguide amplifiers with self-focusing and
self-defocusing Kerr nonlinearities, respectively. The new
self-similar waves are supported by such media if the
magnitudes of the gain and the linear inhomogeneity of
the waveguide are adjusted to maintain a static quadratic
phase chirp of each wave. The main difference between our
self-similar solitary waves and those obtained in Refs. [11–
13] is that the former can be realized in practice under

much less restrictive conditions. The exact solutions dis-
covered in Refs. [11–13] exist only if the parameters of the
system, such as dispersion, nonlinearity, and gain in the
optical case or nonlinearity and trapping potential in the
matter-wave case, satisfy certain fairly restrictive condi-
tions. In contrast, there is no restriction on the strength of
diffraction and medium nonlinearity for the newly discov-
ered self-similar solitary waves to exist [14]. This distinc-
tion is important because, while it may be possible, though
difficult in practice, to simultaneously manage gain, dis-
persion, and nonlinearity of an optical fiber, it is much
more difficult to attain any control over diffraction in a
planar waveguide.

On the fundamental side, the significance of our results
is that they provide a broad class of analytical solutions,
describing solitonlike self-similar waves in amplifying,
inhomogeneous nonlinear media. The intensity profiles of
the new self-similar waves coincide with those of spatial
solitons supported by homogeneous, passive media with
the same type of nonlinearity. Thus, we expose a surprising
connection between spatial self-similar waves in graded-
index gain media and spatial solitons in homogeneous
media with the same type of nonlinearity. We stress that
inhomogeneity of the medium is a key condition for the
existence of the present self-similar waves. Hence, the
gained insights may also be relevant for other types of
nonlinear waves in inhomogeneous and amplifying sys-
tems such as, for instance, matter waves in trapped Bose-
Einstein condensates and atom lasers [15]. On a more
practical side, we propose an efficient way the novel self-
similar waves can be used to realize simultaneous ampli-
fication and focusing of bright and dark spatial solitons in
the future all-optical networks.

We start by considering the propagation of a continuous-
wave optical beam inside a planar, graded-index nonlinear
waveguide amplifier with the refractive index

 n � n0 � n1x
2 � n2I: (1)

Here the first two terms describe the linear part of the
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refractive index and the last term represents a Kerr-type
nonlinearity of the waveguide amplifier. We assume n1 > 0
so that, in the low intensity limit, the graded-index wave-
guide acts as a linear defocusing lens. This feature distin-
guishes our system from previously studied focusing
waveguides and fibers with n1 < 0 [16].

The nonlinear wave equation governing beam propaga-
tion in such a waveguide can be written as
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where g is the gain coefficient and k0 � 2�n0=�, � being
the wavelength of the optical source generating the beam.
If we introduce the normalized variables X � x=w0, Z �
z=LD, G � gLD, U � �k0jn2jLD�

1=2u, where LD � k0w
2
0

is the diffraction length associated with the characteristic
transverse scale w0 � �2k2

0n1�
�1=4, we can rewrite Eq. (2)

in a dimensionless form as
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Here � � �1, with the upper (lower) sign corresponding
to a self-focusing (self-defocusing) nonlinearity of the
waveguide.

The symmetry group analysis of Eq. (3) indicates that a
self-similar wave solution to this equation ought to be
sought in the form

 U�X; Z� �
1

W�Z�
�
�
X� Xc�Z�
W�Z�

�
expfi���X; Z��g; (4)

where Xc is the position of the self-similar wave center.
To avoid a breakup of the beam due to an excessive

nonlinear phase shift, we conjecture that the self-similar
wave field must have an aberrationless spherical wave front
��X; Z� of the form

 ��X; Z� �
1

2
CX2 � B�Z�X���Z�; (5)

where the coefficient C is related to the wave front curva-
ture; it is also a measure of the linear phase chirp imposed
on the self-similar wave.

On substituting from Eqs. (4) and (5) into Eq. (3),
collecting similar terms, and requiring that the real and
imaginary parts of each term be separately equal to zero,
we obtain, after some lengthy but straightforward algebra,
a set of first-order differential equations for the width W,
the coefficient B, and the beam center Xc. This set of
equations is self-consistent only if the chirp parameter C
and gain coefficient G obey the constraint

 G � �C � 1: (6)

The set of first-order differential equations can be readily
solved to obtain the following expressions for W, B, and
Xc:

 W�Z� � W0e
�Z; B�Z� � B0e

Z; (7)

 Xc�Z� � X0e
�Z � B0 sinh�Z�; (8)

where W0, B0, and X0 are initial values of the correspond-
ing parameters. Furthermore, the self-similar wave profile
���� and the phase factor ��Z� are found to satisfy

 �00�� � 2��� 2��3; (9)

 �0Z � �=W2 � B2=2; (10)

where � � �X� Xc�Z��=W�Z� is a similarity variable and
� is a propagation constant to be determined by solving the
eigenvalue problem posed by Eq. (9).

It is instructive to observe that even though the dynamics
of the self-similar wave parameters, governed by Eqs. (7)
and (8), is the same for propagation in linear and nonlinear
media, the presence of the nonlinearity is essential for
physical self-similar waves to exist. Indeed, it follows
from Eq. (9) that, in the absence of the last term describing
the nonlinearity, no bound solutions exist to this equation.

The condition G � gLD � 1 in Eq. (6) is equivalent to
requiring

 g �
��������
2n1

p
; (11)

and it provides a necessary condition for the self-similar
wave existence. Indeed, it follows from Eq. (11) that the
characteristic longitudinal spatial scale associated with the
amplification, LA � 1=g, is completely determined by the
value of the linear defocusing parameter n1. Consequently,
there is no independent characteristic longitudinal scale
describing wave motions of our system, which is an un-
ambiguous signature of the existence of a self-similar
regime [1]. At this point, it is convenient to separately
consider the cases of self-focusing and self-defocusing
nonlinearities.

Self-focusing nonlinearity, � � 1.—The analysis of
Eq. (9) with� � 1 reveals that there exists a bright soliton-
like sech-profile solution for � � 1=2. On integrating
Eqs. (9) and (10) with this value of �, we obtain a family
of bright self-similar waves, with the field of each member
given by

 UB�X; Z� �
1

W�Z�
sech

�
X� Xc�Z�
W�Z�

�
exp��iX2=2�

	 expfi�B�Z� ��B�Z��g: (12)

Here the width and the position of the center of any bright
self-similar wave are specified by Eqs. (7) and (8) and the
accumulated phase �B�z� is given by

 �B�Z� �
�1�W2

0B
2
0�

4W2
0

e2Z: (13)

Further analysis of Eq. (9) indicates that for any positive
� � 1=2, the new self-similar waves have the form of
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periodic trains such that
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�
; k
�

	 expfi��X2=2� B�Z� ��B�Z��g; (14)

where dn�x; k� is a Jacobi elliptic function with the elliptic
modulus k � ��S2

� � S
2
��=S2

��
1=2. The parameters S� are

defined as S� � �� ��2 � j�j�1=2, where � is a real
negative constant such that 0<�� < �. Equation (14)
describes a periodic train of self-similar waves, whose
amplitude grows exponentially and whose period decays
exponentially with Z as 4K�k�W0e�Z=S�, where K�k� is a
complete elliptic integral of the first kind. Of course,
physical, finite-power realizations of such periodic self-
similar wave solutions do not extend to infinity along the X
direction; rather they are matched to the exponentially
decaying radiation modes at the edges of the waveguide.

Self-defocusing nonlinearity, � � �1.—A similar
analysis of Eqs. (9) and (10) in the case of a defocusing
nonlinearity reveals that a dark self-similar wave family
also exists for � � 1. The optical field associated with
each member of this family can be written as

 UD�X; Z� �
1

W�Z�
tanh

�
X� Xc�Z�
W�Z�

�
exp��iX2=2�

	 expfi�B�Z� ��D�Z��g: (15)

Again, the width and the position of the center of any dark
self-similar wave are given by Eqs. (7) and (8), and the
phase �D�z� is given by

 �D�Z� �
�2�W2

0B
2
0�

4W2
0

e2Z: (16)

The newly discovered families of bright and dark self-
similar waves are completely determined by three free
parameters—the values of the width W0, the beam center
X0, and the phase-shift coefficient B0 in the source plane.
We stress that these self-similar waves represent exact,
nonperturbative solutions to nonlinear wave Eq. (3).
Thus, they are drastically different from the well-known
results of soliton perturbation theory, which predicts the
existence of solitons with slowly (adiabatically) varying
width, velocity, and the phase under the influence of small
perturbations [17].

Another interesting feature of the novel self-similar
waves is associated with the nontrivial dynamics of the
solitary wave center: The analysis of Eq. (8) reveals that if
sign�X0� � sign�B0� and jX0j> jB0j, the magnitude of the
wave center coordinate attains its minimum value at a
certain distance; otherwise it increases monotonically.
This behavior of the beam center is clearly seen in
Figs. 1 and 2, where we display analytical solutions for
the bright and dark self-similar waves under the initial
conditions such that in Figs. 1(a) and 2(a) jX0j> jB0j
and in Figs. 1(b) and 2(b) jX0j 
 jB0j, respectively. To

explain such a behavior, we use Eqs. (6) and (7) to rewrite
the expression for the phase ��X; Z� as

 ��X; Z� � �1
2�X� B0e

Z�2 � ~��Z�: (17)

It follows from Eqs. (8) and (17) that, even if the beam-
center position X0 does not coincide with the phase-
curvature center position B0 initially at Z � 0, both centers
evolve in unison at sufficiently large Z. A qualitative
analysis of the coupled dynamics of the phase and ampli-
tude of the self-similar wave indicates that the beam-center
and phase-curvature center must propagate in concert for
the wave to maintain constant intensity profile. It follows
that if jX0j> jB0j, the magnitude of Xc has to decrease
during the initial transition period to ensure that it evolves
in unison with the phase-curvature center. This feature
explains the different evolution scenarios of the beam
center exhibited in the two parts of Figs. 1 and 2 for the
bright and dark self-similar waves, respectively.

To address the stability issue, we solved Eq. (3) numeri-
cally with the split-step Fourier method [18]. Figure 3
shows the amplitude of self-similar waves for Z � 1, 2,
and 2.5 for � � 1, G � 1, X0 � 5, and B0 � 0:2. The
analytical solution in Eq. (12) is plotted for comparison
as a dotted line. The two solutions nearly coincide at Z � 1
but begin to differ in the beam wings for Z > 1:5 because
of the continuum radiation emitted by such waves. The
radiation level is near 10�3 at Z � 2 but increases rapidly
to exceed 1% at Z � 3 (corresponding to an intensity level
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FIG. 1. Evolution of a bright self-similar wave for (a) X0 � 2
and (b) X0 � 0:1. In both cases, B0 � 0:2 and W0 � 1.
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FIG. 2. Evolution of a dark self-similar wave for (a) X0 � 2
and (b) X0 � 0:1. In both cases, B0 � 0:2 and W0 � 1.
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of 0.01%). Since the bright and dark self-similar waves
found in this Letter are stable over a few diffraction
lengths, they may still be useful for practical applications.

In particular, the solitonlike nature of our self-similar
waves hints to the possibility of designing a waveguide
soliton amplifier. The proposed device is expected to op-
erate as follows. A linear phase chirp is imprinted on a
fundamental bright (or dark) spatial soliton using an ap-
propriate phase mask placed at the entrance to the graded-
index waveguide. If the amplifier gain g satisfies the con-
dition given in Eq. (11), the entering phase-chirped spatial
soliton propagates inside the amplifier as a self-similar
wave found in this Letter and is thus compressed as it is
amplified, while preserving its shape. At the exit of the
amplifier, a second phase mask is used to remove the phase
chirp. The resulting beam is an amplified and focused
bright (or dark) soliton that may be useful for future all-
optical networks.

Before concluding, we consider a suitable example and
focus on a 5 cm long planar silicon waveguide, pumped
optically to amplify an input beam by a factor of 10
through the Raman gain (g ’ 0:46 cm�1). The waveguide
is only 1 �m thick and confines input beam in the y
direction. No such confinement occurs in the x direction
along which n varies as indicated in Eq. (11). To satisfy
Eq. (1), the refractive index must be graded with n1 ’
0:1 cm�2, which lead to w0 � 70 �m near 1:55 �m.
The diffraction length for this value of w0 is about 2 cm.
If we use n2 � 6	 10�14 cm2=W, the required peak in-
tensity is 100 MW=cm2, translating into input power levels
�100 W. Such power levels are easily realized under
quasicontinuous conditions (relatively broad pulses) for
which our theory remains applicable.

In conclusion, we have discovered and analytically de-
scribed a wide class of spatial solitonlike self-similar
waves which can propagate in graded-index, nonlinear
waveguide amplifiers. Our results shed light on the inter-

esting connection between self-similar waves and solitons
existing in inhomogeneous and homogeneous nonlinear
media, respectively. Using novel self-similar waves, we
propose a potentially powerful method for the amplifica-
tion and focusing of spatial solitons to overcome inevitable
energy losses from which such solitons will suffer while
performing multiple functions in futuristic all-optical
networks.
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