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Abstract: We obtain exact self-similar solutions to an inhomogeneous
nonlinear Schr̈odinger equation, describing propagation of optical pulses
in fiber amplifiers with distributed dispersion and gain. We show that there
exists a one-to-one correspondence between such self-similar waves and
solitons of the standard, homogeneous, nonlinear Schrödinger equation
if a certain compatibility condition is satisfied. As this correspondence
guarantees the stability of the novel self-similar waves, we refer to them as
similaritons. We demonstrate that, the character of similariton interactions
crucially depends on the sign of the similariton phase chirp. In particular,
we show that the similariton interactions can under certainconditions lead
to the formation of molecule-like bound states of two similaritons.
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1. Introduction

Optical solitons, the special wave envelops that maintain both their shape and size during prop-
agation inside nonlinear media, have been studied in several different contexts [1–4]. Recently,
optical solitons have been intensively studied in inhomogeneous nonlinear optical media, and
a powerful generalization of the inverse scattering technique [1] has been developed to identify
integrable inhomogeneous nonlinear systems and analytically determine the shape-preserving
waves supported by such systems [5–8].

A more general class of shape-preserving waves includes self-similar waves, whose envelope
maintains its overall shape but its parameters such as amplitude, width, and chirp evolve with
propagation inside nonlinear media [9]. Such self-similarwaves, often referred to as similari-
tons, have recently attracted much attention in the contextof optical fiber amplifiers [10–15].
A spatial analog of similaritons has also been discovered ingraded-index waveguide ampli-
fiers [16]. The underlying equation in all cases is an inhomogeneous nonlinear Schrödinger
equation (NLSE). The same equation governs the dynamics of Bose–Einstein condensation in
atomic traps [17].

An intriguing unresolved aspect of similariton theory is concerned with the similariton in-
teractions. In this context, a fundamental question arises: Do similaritons behave differently
under collisions than solitons do? This question has recently been addressed numerically for
parabolic-shape similaritons that form asymptotically inthe normal-dispersion region of a ho-
mogeneous fiber amplifier [14]. Here, we develop an analytical approach to study similariton
collisions governed by the generic inhomogeneous NLSE of the form

i
∂U
∂ z

− i
g(z)

2
U −

β (z)
2

∂ 2U
∂τ2 + γ(z)|U |2U = 0, (1)

whereg(z), β (z) andγ(z) are arbitrarily distributed parameters. The model is sufficiently gen-
eral to describe a multitude of physical systems in nonlinear optics and condensed matter
physics. In the optical context, it describes the evolutionof the slowly varying envelopeU(τ,z)
of an optical pulse propagating along thez axis in a fiber amplifier with nonuniform dispersion
β (z), gaing(z), and nonlinearityγ(z).

Equation (1) is known to have similariton solutions [11, 13], provided a certain relation ex-
ists amongβ (z), g(z), andγ(z), but the relationship of these similaritons to the conventional
solitons, if any, is not clear. It turns out that a simple transformation exists that reduces Eq. (1)
to the standard homogeneous NLSE that is well known to be integrable by the inverse scat-
tering method [18]. As a result, a one-to-one correspondence can be established between any
soliton of the homogeneous NLSE and a stable self-similar wave of the inhomogeneous NLSE.
Clearly, the stability of the latter follows from the stability of the former. We refer to such sta-
ble self-similar waves assimilaritons and suggest that parabolic-shape similaritons that form
asymptotically in fiber amplifiers [12], should be calledasymptotic similaritons, because their
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stability is not guaranteed. We study both single- and multi-similariton solutions of Eq. (1). In
particular, we show that the evolution of any multi-similariton solution can be interpreted as ei-
ther an elastic similariton collision, or as the formation of a multi-similariton bound state. The
latter scenario does not occur for solitons in exactly integrable systems, and hence it isunique
for similaritons in such systems. The character of the similariton interaction isuniversal as it
depends only on the sign of the overall chirp and asymptotic properties of the fiber’s dispersion
map, but not on the specific forms ofβ (z) andg(z).

2. General similariton solution

We begin by seeking a solution to Eq. (1) in the form

U(τ,z) = A(z)Ψ
[

τ − τc(z)
w(z)

,ζ (z)

]

exp[iΦ(τ,z)], (2)

whereA(z), w(z), andτc(z) are the amplitude, width, and position of the pulse, respectively,
andζ (z) is an effective propagation distance yet to be determined. For a similariton, the phase
front is generally parabolic (corresponding to a linearly chirped pulse) with the form

Φ(τ,z) = c(z)τ2/2+b(z)τ +d(z), (3)

wherec(z) andb(z) specify the curvature and the position of the center of the wavefront, re-
spectively, andd(z) is independent ofτ. We stress that chirp is not an essential feature of
similaritons considered in this paper, and chirp-free similaritons withc = 0 may exist.

Substituting from Eqs. (2) and (3) into the NLSE, Eq. (1), andgathering similar terms, we
obtain a set of differential equations for the parameters describing the evolution of the pulse
such thatΨ obeys the homogeneous NLSE

i∂ζ Ψ∓
1
2

∂ 2
χχ Ψ+ |Ψ|2Ψ = 0, (4)

where the upper (lower) sign corresponds to the case of normal (anomalous) dispersion and the
similarity variable is defined as

χ(τ,z) = [τ − τc(z)]/w(z). (5)

The differential equations governing the evolution of pulse parameters can be easily solved
to obtain the following expressions for the effective propagation distance, width, amplitude,
and the position of the pulse:

ζ (z) =
|D(z)|

w2
0[1− c0D(z)]

, w(z) = w0[1− c0D(z)], (6)

A(z) = w(z)−1[|β (z)|/γ(z)]1/2, τc(z) = τ0− (c0τ0 +b0)D(z), (7)

whereD(z) =
∫ z

0 dsβ (s) represents the accumulated dispersion. The parameters related to the
phase are given by

c(z) =
c0

1− c0D(z)
, b(z) =

b0

1− c0D(z)
, d(z) =

(b2
0/2)D(z)

1− c0D(z)
. (8)

Further, the transformation of the inhomogeneous NLSE intothe homogeneous one is only
possible if the parameters of the medium satisfy the condition

g(z) = β (z)c(z)+
d
dz

ln

[

β (z)
γ(z)

]

. (9)
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This compatibility condition was first found in Ref. [11], and later in Ref. [13], where a few
particular members of the similariton family were obtainedusing a different approach.

We note that a transformation from Eq. (1) to Eq. (4) with a structure similar to our Eq. (2),
was previously applied in Ref. [19]. The difference, however, is that the transformation discov-
ered by the authors of Ref. [19] using symbolic computer calculations is not optimal because
it containssix free parameters, whose physical significance is rather opaque. By comparison,
our transformation has onlyfour free parameters with very clear physical meaning:c0 andb0

are the initial curvature and the position of the wavefront,τ0 is the initial position of the pulse
center, andw0 is the initial similariton width.

Equations (4)–(8) show that any soliton of the homogenous NLSE is related to a similariton
obeying the inhomogeneous NLSE with the compatibility condition given in Eq. (9). It follows
from the exact integrability of the NLS equation [1] that allsuch similaritons must be stable.
Moreover, they should survive mutual collisions just as solitons do, even though their width,
amplitude, and chirp will keep changing during and after thecollision. Further, higher-order
solitons of the NLS equation correspond to multi-similariton solutions of Eq. (1).

In analogy with the standard solitons, we refer to similariton solutions of Eq. (1) as being
bright or dark depending on whether the dispersion is anomalous or normal. It follows from
the well-known single-soliton solution to the homogeneousNLSE [18] that fields of the funda-
mental bright and dark similaritons are given by

UB(χ,ζ ) = aAsech[a(χ − vζ )]ei(Φ+ΘB) (10)

UD(χ,ζ ) = u0[cos(φ) tanh(ΘD)+ isin(φ)]ei(u2
0ζ+Φ). (11)

Herea andv are the amplitude and velocity of a bright soliton. In the case of a dark soliton,u0

is the background amplitude obeying the homogeneous NLSE and φ corresponds to the total
phase shift across the dark soliton. The corresponding phases of the bright(ΘB) and dark(ΘD)
solitons are specified by the usual expressions [2]

ΘB(χ,ζ ) = vχ/2+a2ζ − v2/4, (12)

ΘD(χ,ζ ) = u0cos(φ)[χ −u0ζ sin(φ)]. (13)

We note that, in the limiting case in which the similaritons are at rest (v = 0 andφ = 0), our
solution reduces to that previously reported in Ref. [13] with the particular initial condition
b0 = −c0τ0.

3. Specific dispersion profiles

We now apply our general results to a few cases of practical interest. Consider first a fiber
with z-dependent gain but constant values ofβ andγ. This case was first studied in Ref. [10]
and it leads to a simple compatibility conditiong(z) = βc(z). If the initial chirp c0 = 0, the
fiber should have no gain (or loss) to satisfy this condition.Since all pulse parameters then
become independent ofz, we recover the standard solitons. On the other hand, ifc0 6= 0, the
compatibility condition is satisfied if the gain (or loss) ofthe fiber varies withz as [10]

g(z) =
c0β

1− c0β z
. (14)

The gain is needed whenc0β > 0. Thus, a fiber amplifier whose gain increases along the fiber
length, as indicated above, supports bright similaritons whenβ < 0, and dark similaritons when
β > 0, with the opposite types of chirps. The first row of Figure 1 shows the evolution of the
fundamental bright and dark similaritons after choosing|c0| = 0.1, b0 = 2, andτ0 = −5. In
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Fig. 1. Evolution of the fundamental (a) bright and (b) dark similaritons inside a fiber with
constant dispersion. The sign of initial chirp of|c0|= 0.1 ensuresc0β > 0. The initial chirp
is reversed in parts (c) and (d) so thatc0β < 0 and the fiber exhibits loss instead of the gain.

the dark similariton case, we usedu0 = 1 andφ = 0. In both cases, the pulse compresses as
it is amplified, and its width decreases withz asw(z) = w0(1− c0β z). It is important to stress
that the limitc0β z → 1 cannot be attained in practice not only because it requiresinfinite gain
but also because the higher-order effects not included in Eq. (1) would stop the compression
process well before this limit is reached.

The opposite case for whichc0β < 0 in Eq. (14) is also interesting. In this case, similaritons
exist if fiber losses decrease withz, and the similariton width increases continuously. It is re-
markable that stable similaritons can form in a lossy, constant-dispersion fiber, a possibility that
does not appear to have been noticed so far. In practice, fiberlosses can be madez-dependent by
pumping the fiber suitably so that the Raman gain compensatesfor a part of the total loss. The
second row of Figure 1 shows the evolution of the fundamentalbright and dark similaritons in
this case. All parameters are the same, but the sign of initial chirp has been reversed to ensure
thatc0β < 0. As expected from the relationw(z) = w0(1− c0β z), the widths of both types of
similaritons broaden by a factor of 1.6 atz = 6 becausec0β = −0.1 in this example. Note also
that the pulse center shifts as dictated byb(z) in Eq. (8) becauseb0 = 2 in all cases shown in
Fig. 1.

As another example, consider a fiber whose dispersion decreases exponentially along its
length such thatβ (z) = β0e−σz. The new feature in this case is that the accumulated dispersion
D(z) does not keep increasing withz but approaches a constant value ofβ/σ at distances
such thatσz ≫ 1. As a result, the width of the similariton inside such an amplifier decreases
initially but eventually becomes constant with a valuewm = w0(1−c0β0/w2

0σ). Figure 2 shows
the gain profileg(z) for which the compatibility condition is satisfied, together with w(z), for
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Fig. 2. (a). Amplifier gaing(z) and (b) similariton widthw(z) as a function ofz/LD for
several values ofσ in the casec0 = −0.1 andβ2 < 0.
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Fig. 3. Evolution of the fundamental (a) bright and (b) dark similaritons over 8LD in the
specific case ofσ = 0.1.

c0 =−0.1 and several values ofσ with the dispersion lengthLD = w2
0/|β0| providing the length

scale. The required gain or loss is relatively small and changes along the fiber length slowly. In
particular, it vanishes forσ = 0.1. Note also that the required gain becomes negative forσ >
0.1, indicating again that similaritons can form in a lossy fiber. These features of dispersion-
decreasing fibers are well known and have been discussed in Ref. [13]. Similaritons can undergo
compression inside such a lossy fiber because decreasing dispersion provides an effective gain
that can exceed fiber losses.

The evolution of the fundamental bright and dark similaritons over eight dispersion lengths
is displayed in Fig. 3 for the specific caseσ = 0.1 for which the required amplifier gain is zero.
As before, pulses are chirped initially such that|c0| = 0.1. All other parameters are identical to
those used in Fig. 1. In both cases shown in Fig. 3, the fundamental similariton compresses and
its position shifts because of the chirp imposed on it. A noteworthy feature is that the trajectory
of the pulse center does not follow a straight line that was the case in Fig. 1. This observation
can be understood from the expression forb(z) in Eq. (8) and the fact thatD(z) tends to a
constant for large values ofz.

We now briefly discuss the common case of dispersion management in which two fibers
with constant but opposite kinds of dispersion are combinedin a periodic fashion to form a
dispersion map [20]. Our solution applies to this case as well. In fact, the situation is similar
to the constant-dispersion case discussed earlier, because the compatibility condition in Eq.
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(9) reduces tog(z) = βc(z) in each fiber section. The main difference is that, as the signof
β changes from one section to the next, the gain of fiber should also change sign, i.e, if the
section with anomalous dispersion exhibits gain, the normal-dispersion section must be lossy.
In the specific case in which the magnitude of dispersion is the same for all sections,D(z) is a
periodic function such that it returns to zero after each mapperiod. As a result, the pulse width
and chirp also vary in a periodic manner.

4. Elastic collisions of self-compressing similaritons

Since our similaritons are related to standard solitons through a simple transformation, we
expect them not only to be stable but also to survive mutual collisions. To study collisions
of similaritons, we focus on the specific case of two identical bright similaritons [β (z) < 0],
separated initially in time, but moving with opposite velocities so that they begin to overlap
and interact with each other. It follows from the standard soliton theory based on the inverse
scattering transform [18] that the combined intensity profile of the two such similaritons can be
written as

I(ζ ,τ) = 2A2(z)
∂ 2

∂ χ2 ln(detM), (15)

whereM is a matrix whose determinant is given by

detM = 1+ e2(η1+η∗
1+δ11) + e2(η2+η∗

2+δ22) − e2(η1+η∗
2+δ12) − e2(η∗

1+η2+δ ∗
12) +Ke4Re(η1+η2), (16)

K = e2(δ11+δ22) + e2(δ12+δ ∗
12) −2e(δ11+δ22+δ12+δ ∗

12). (17)

The parametersη j andδ jk ( j,k = 1,2) are defined as

η j = iλ j(χ +λ jζ ), eδ jk =

{

|r j|/(2ν j), j = k;
(r jr∗k)

1/2/(λ j −λ ∗
k ), j 6= k.

(18)

Here,r j are the residues of direct scattering data andλ j = µ j + iν j ( j = 1,2) are the discrete
eigenvalues specifying the amplitude and velocity of single-soliton solutions of Eq. (4).

Consider the behavior of the two-similariton field in the reference frame moving with thejth
similariton. The trajectory of this similariton,η j +η∗

j = const., can be expressed as

τ − τ0 +(c0τ0 +b0−2µ j/w0)D(z)

1− c0D(z)
= const. (19)

Whenc0 < 0, each similariton compresses on propagation in a fiber withanomalous dispersion
[β (z) < 0]. It follows from Eqs. (5), (18), and (19) that in the interval 0≤ z ≤ z∗, η3− j → ∞ as
z → z∗, wherez∗ is a solution of the equation, 1−|c0D(z∗)| = 0. From Eqs. (15) and (16), the
intensity profile of thejth similariton in the limitz → z∗ has the asymptotic form

I j(χ,ζ ) ∼ 4ν2
j A2(z)sech2[2ν j(χ +2µ jζ )+∆ j], (20)

where the shift∆ j of the similariton center position is given by

∆ j = −
1
2

ln[e2δ j j + e2(δ12+δ ∗
12−δ3− j,3− j) −2e(δ12+δ ∗

12+δ j j−δ3− j,3− j)]. (21)

Thus, similar to the soliton case, the self-compressing multi-similariton solutions can be inter-
preted in terms of elastic collisions of continuously evolving fundamental similaritons.

To illustrate numerically the behavior of similaritons upon collisions, we consider a simple
nontrivial example of two colliding single-similariton pulses of equal amplitudes (ν1 = ν2 =

#79310 - $15.00 USD Received 23 January 2007; revised 20 February 2007; accepted 20 February 2007

(C) 2007 OSA 19 March 2007 / Vol. 15,  No. 6 / OPTICS EXPRESS  2969



Distance, z

T
im

e,
 τ

0 1 2 3 4 5 6

−10

−5

0

5

10

Distance, z

T
im

e,
 τ

0 1 2 3 4 5 6 7 8

−10

−5

0

5

10

Fig. 4. Collision of two bright similaritons inside a constant-dispersion fiber (top) and a
dispersion-decreasing fiber (bottom) withσ = 0.2. In both casesc0 = −0.1.

ν) and phases traveling with the opposite velocities (µ1 = −µ2 = µ). The initial positions of
the similaritons are chosen such thatr1 = r∗2 = (2ν/µ)(µ + iν). Under such conditions, we
have obtained an explicit analytical expression for the combined intensity profile of the two
colliding similaritons, but it is too cumbersome to presenthere. We only point out that, under
such conditions, the center position of each similariton suffers a shift,∆ = ln(

√

µ2 +ν2/µ),
during collision.

We now illustrate elastic collisions of similaritons for the two specific dispersion profiles of
Section 3. Figure 4 displays the collision of two bright similaritons inside a constant-dispersion
(top) and inside a dispersion-decreasing fiber withσ = 0.2 (bottom). Notice from Fig. 2 that
the required gain is negative for the dispersion-decreasing fiber, i.e., the similaritons collide
inside a lossy fiber. In both cases, we useµ = 1.2, ν = 0.8 andc0 = −0.1. The collision is
elastic in both cases and displays qualitative features that are well-known for standard soliton
theory with only minor differences. In the case of constant dispersion, solitons follow a straight
trajectory, before as well as after the collision. In contrast, the trajectories are curved for the
dispersion-decreasing fiber.
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Fig. 5. Collision of two bright similaritons inside a constant dispersion fiber.The similariton
parameters areµ = 1, ν = 1, andc0 = 0.

5. Interactions of chirp-free similaritons

So far, we have focused on chirped similaritons. In the case of a chirp-free similariton (c0 = 0),
the similariton width does not change on propagation. The analysis of Eqs. (16) and (18) for
this situation leads to the conclusion that, when the dispersion satisfies the asymptotic condition

lim
z→∞

D(z) = ∞, (22)

the two-similariton field breaks into two single similaritons whose asymptotic intensity profiles
are of the form

I j(τ,z)∼4ν2
j A2(z)sech2

{

2ν j

w0
[τ+κ jD(z)]+ ∆̃ j

}

, (23)

whereκ j = b0−2µ j/w0 and∆̃ j = ∆ j −2ν jτ0/w0. In this case, the similariton interaction can
be interpreted as an elastic collision, and a specific case isillustrated in Fig. 5 for a fiber with
constant dispersion using the parametersµ = 1 andν = 1 with c0 = 0. Recall that the similari-
tons reduce to standard solitons under such conditions and their width does not change during
propagation.

If the asymptotic condition (22) is not met, the similaritoninteraction leads to the forma-
tion of a bound state of two similaritons. To illustrate sucha situation, we consider again the
case of a dispersion-decreasing fiber but choose a relatively large valueσ = 0.8. In this case,
limz→∞ D(z) = β0/σ , and the asymptotic condition in Eq. (22) is not satisfied. The collision
of two chirp-free similaritons in this case is shown in Fig. 6using µ = 3, ν = 1, σ = 0.8,
andc0 = 0. This figure shows clearly that, after the two pulses collide, they become trapped
and move together as one unit. We refer to such a state as a “similariton molecule,” bound to-
gether through the nonlinear interaction mediated by the cross-phase modulation. Notice that
the compatibility condition now corresponds tog(z) = −σ , implying a constant loss along the
fiber. This is generally the case in practice. Thus, we have discovered that stable similariton
bound states can propagate inside a lossy fiber, provided fiber dispersion decreases along its
length.
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Fig. 6. Formation of a two-similariton bound state upon collision of two bright similaritons
inside a dispersion-decreasing fiber withµ = 3, ν = 1, σ = 0.8, andc0 = 0.

6. Bound states of two spreading similaritons

In the case of collision shown in Fig. 6, the tails of two emerging similaritons overlap, but
each similariton still maintains its own identity. A very different situation occurs when two
spreading similaritons collide inside a fiber such that the asymptotic condition (22) is not met.
Indeed, our analysis of Eqs. (16) and (18) shows that a multi-similariton solution never breaks
up into single similaritons in the casec0β (z) < 0 in which the similariton width increases with
distance, regardless of a particular form of the dispersionmap.

We illustrate the bound-state formation of two similaritons in the case of a dispersion-
decreasing fiber in Fig. 7 using the same parameter values as those used in Fig. 6, except
thatc0 = 0.2. Since the fiber is assumed to exhibit anomalous dispersion, c0β (z) < 0, and the
width of similaritons increases as they collide. As is clearly seen in the figure, after the two
similaritons collide, they fail to separate and form a boundstate. The fringe pattern across the
temporal profile of the two pulses results from their temporal overlapping. We stress that this
behavior holds irrespective of a particular functional form of β (z). In this sense, the evolution
scenarios discussed in this paper are universal for all similaritons of Eq. (1).

7. Conclusions

In summary, we have modeled the propagation of optical pulses inside a fiber with nonuniform
dispersion and gain by an inhomogeneous NLSE. We show through a similarity transformation
that a one-to-one correspondence exists between the similaritons that are analytical solutions
of this equation and the standard solitons that are analytical solutions of the homogeneous
NLSE, provided a certain comparability condition is satisfied. This correspondence guarantees
the stability of the novel bright and dark similaritons. As an example, we focus on two specific
dispersion maps and discuss the different similariton features associated with them. In general,
whenever the similaritons are chirped, their initial chirpc0 plays an important role through the
productc0β . If this quantity is positive, the similaritons are self-compressed and amplified.
In contrast, ifc0β is negative, similaritons can form even in a lossy fiber, but they spread on
propagation along the fiber.
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Fig. 7. Formation of a two-similariton bound state upon collision of two bright similaritons
inside a dispersion decreasing fiber withc0 = 0.2. All other parameters are identical to
those used in Fig.6.

Our results indicate deep similarities as well as qualitative differences between solitons in
homogeneous media and similaritons in inhomogeneous media. We show that, despite the exact
integrability of the nonlinear system, the interaction between two such similaritons can result in
either an elastic collision in which the two similaritons experience a temporal shift but separate
from each other after the collision, or in the formation of a bound state of two similaritons
representing a similariton molecule. Which scenario takes place in a specific case depends on
the sign of the overall similariton chirp and the asymptoticproperties of the medium dispersion
map.
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