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Abstract:  We obtain exact self-similar solutions to an inhomogeneous
nonlinear Schiddinger equation, describing propagation of optical milse
in fiber amplifiers with distributed dispersion and gain. \Wlew that there
exists a one-to-one correspondence between such seléisiwaves and
solitons of the standard, homogeneous, nonlinear &liger equation
if a certain compatibility condition is satisfied. As thisroespondence
guarantees the stability of the novel self-similar waves refer to them as
similaritons. We demonstrate that, the character of similariton intéoas
crucially depends on the sign of the similariton phase cHirgarticular,
we show that the similariton interactions can under certaimditions lead
to the formation of molecule-like bound states of two simiitans.
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1. Introduction

Optical solitons, the special wave envelops that maintath their shape and size during prop-
agation inside nonlinear media, have been studied in dediffiexent contexts [1-4]. Recently,
optical solitons have been intensively studied in inhonmegeis nonlinear optical media, and
a powerful generalization of the inverse scattering tegphai1] has been developed to identify
integrable inhomogeneous nonlinear systems and andlytietermine the shape-preserving
waves supported by such systems [5-8].

A more general class of shape-preserving waves includesis@lar waves, whose envelope
maintains its overall shape but its parameters such as tamliwidth, and chirp evolve with
propagation inside nonlinear media [9]. Such self-simi¥ares, often referred to as similari-
tons, have recently attracted much attention in the comteaptical fiber amplifiers [10-15].
A spatial analog of similaritons has also been discoveregraled-index waveguide ampli-
fiers [16]. The underlying equation in all cases is an inhoemagpus nonlinear Sabdinger
equation (NLSE). The same equation governs the dynamicesé-EEinstein condensation in
atomic traps [17].

An intriguing unresolved aspect of similariton theory isicerned with the similariton in-
teractions. In this context, a fundamental question ariBessimilaritons behave differently
under collisions than solitons do? This question has récéeen addressed numerically for
parabolic-shape similaritons that form asymptoticallyia normal-dispersion region of a ho-
mogeneous fiber amplifier [14]. Here, we develop an analyipproach to study similariton
collisions governed by the generic inhomogeneous NLSEefdhm

oU gz 2) 02U

|%Z—|%)U—@%+y(z)\uﬁuzo, Q)
whereg(z), B(z) andy(z) are arbitrarily distributed parameters. The model is sieffity gen-
eral to describe a multitude of physical systems in nonlirggaics and condensed matter
physics. In the optical context, it describes the evolutibthe slowly varying envelopd (1, 2)
of an optical pulse propagating along thaxis in a fiber amplifier with nonuniform dispersion
B(2), gaing(z), and nonlinearityy(z).

Equation (1) is known to have similariton solutions [11,,]@ovided a certain relation ex-
ists among3(z), g(z), andy(z), but the relationship of these similaritons to the conarl
solitons, if any, is not clear. It turns out that a simple sfanmation exists that reduces Eq. (1)
to the standard homogeneous NLSE that is well known to bgrialde by the inverse scat-
tering method [18]. As a result, a one-to-one corresporglean be established between any
soliton of the homogeneous NLSE and a stable self-similaewéthe inhomogeneous NLSE.
Clearly, the stability of the latter follows from the statyilof the former. We refer to such sta-
ble self-similar waves asmilaritons and suggest that parabolic-shape similaritons that form
asymptotically in fiber amplifiers [12], should be callasymptotic similaritons, because their
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stability is not guaranteed. We study both single- and rsitfiiilariton solutions of Eq. (1). In
particular, we show that the evolution of any multi-simii@n solution can be interpreted as ei-
ther an elastic similariton collision, or as the formatidraonulti-similariton bound state. The
latter scenario does not occur for solitons in exactly irabte systems, and hence itisique
for similaritons in such systems. The character of the sirtdn interaction isuniversal as it
depends only on the sign of the overall chirp and asymptotpgrties of the fiber's dispersion
map, but not on the specific forms Bfz) andg(z).

2. General similariton solution
We begin by seeking a solution to Eg. (1) in the form

T—1c(2)
w(z)

U(rg — Az | T4 ¢ @) exio. 2 @
whereA(z), w(z), andt:(z) are the amplitude, width, and position of the pulse, respslgt
and{(z) is an effective propagation distance yet to be determinedaimilariton, the phase
front is generally parabolic (corresponding to a lineahyjrged pulse) with the form

D(1,2) = c(2)T2/2+b(2) T+ d(2), ©)

wherec(z) andb(z) specify the curvature and the position of the center of theefvant, re-
spectively, andd(z) is independent of. We stress that chirp is not an essential feature of
similaritons considered in this paper, and chirp-free lsirtons withc = 0 may exist.

Substituting from Egs. (2) and (3) into the NLSE, Eq. (1), gathering similar terms, we
obtain a set of differential equations for the parametessidaing the evolution of the pulse
such that¥ obeys the homogeneous NLSE

. 1
|05LP:F§0§X'~P+|LP\ZHJ:O, (4)

where the upper (lower) sign corresponds to the case of n¢gamamalous) dispersion and the
similarity variable is defined as

X(1,2) = [1 - (2)] /W(2). ©)

The differential equations governing the evolution of pyb&rameters can be easily solved
to obtain the following expressions for the effective prgg@on distance, width, amplitude,
and the position of the pulse:

ID(2)

(@)= i b W(z) = wo[L— coD(2)], ®)
AG) = w2 HIB@I/VDY2, Te(2) = To— (coTo-+bo)D(2), ™

whereD(z) = [§dsB(s) represents the accumulated dispersion. The parametatsdéb the
phase are given by
Co bo _ (b§/2)D(2)

“@=1"epm "?~"1epm P T-wd@" v

Further, the transformation of the inhomogeneous NLSE theohomogeneous one is only
possible if the parameters of the medium satisfy the caoiti

d [B@?
Z) = B(2)c(z In . 9
9(2) = B2 + [y(z) ©)
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This compatibility condition was first found in Ref. [11], &fater in Ref. [13], where a few
particular members of the similariton family were obtainesihg a different approach.

We note that a transformation from Eq. (1) to Eq. (4) with acture similar to our Eq. (2),
was previously applied in Ref. [19]. The difference, howeisthat the transformation discov-
ered by the authors of Ref. [19] using symbolic computerwudatons is not optimal because
it containssix free parameters, whose physical significance is ratherumpdy comparison,
our transformation has onlpur free parameters with very clear physical meanitggand by
are the initial curvature and the position of the wavefragis the initial position of the pulse
center, andvg is the initial similariton width.

Equations (4)—(8) show that any soliton of the homogenouSHlis related to a similariton
obeying the inhomogeneous NLSE with the compatibility abod given in Eq. (9). It follows
from the exact integrability of the NLS equation [1] that silich similaritons must be stable.
Moreover, they should survive mutual collisions just astens do, even though their width,
amplitude, and chirp will keep changing during and after ¢bBision. Further, higher-order
solitons of the NLS equation correspond to multi-simitamisolutions of Eq. (1).

In analogy with the standard solitons, we refer to simitarisolutions of Eq. (1) as being
bright or dark depending on whether the dispersion is anousabr normal. It follows from
the well-known single-soliton solution to the homogenelUSE [18] that fields of the funda-
mental bright and dark similaritons are given by

Us(x,{) = aAsecha(x —v{)]e/®% (10)
U (X.) = Uo[cos @) tanh(@p) + i sin(p)] 16¢ ). (11)

Herea andv are the amplitude and velocity of a bright soliton. In theecaka dark solitonyg
is the background amplitude obeying the homogeneous NL$Epaiorresponds to the total
phase shift across the dark soliton. The correspondingeghafehe bright©g) and dark(©p)
solitons are specified by the usual expressions [2]

OB(X.{) = Vx/2+al —V*/4, (12)
©p(X,{) = Upcog @)[X — Uod sin(@)]. (13)

We note that, in the limiting case in which the similaritome at rest{ = 0 andg = 0), our
solution reduces to that previously reported in Ref. [13fhwihe particular initial condition
bg = —CoTo.

3. Specific dispersion profiles

We now apply our general results to a few cases of practi¢ataést. Consider first a fiber
with z-dependent gain but constant valueg3aéindy. This case was first studied in Ref. [10]
and it leads to a simple compatibility conditiaiz) = 8¢(z). If the initial chirp co = 0, the
fiber should have no gain (or loss) to satisfy this conditi®mce all pulse parameters then
become independent af we recover the standard solitons. On the other hang, # 0, the
compatibility condition is satisfied if the gain (or loss)tbg fiber varies wittz as [10]

B
- 1-cBz

The gain is needed whe3 > 0. Thus, a fiber amplifier whose gain increases along the fiber
length, as indicated above, supports bright similaritohemB < 0, and dark similaritons when

B > 0, with the opposite types of chirps. The first row of Figurehiwss the evolution of the
fundamental bright and dark similaritons after choosiag = 0.1, bp = 2, andtp = —5. In

9(2)

(14)
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Fig. 1. Evolution of the fundamental (a) bright and (b) dark similaritos&liea a fiber with
constant dispersion. The sign of initial chirp|of| = 0.1 ensuresp > 0. The initial chirp
is reversed in parts (c) and (d) so tiegB < 0 and the fiber exhibits loss instead of the gain.

the dark similariton case, we useg =1 andg = 0. In both cases, the pulse compresses as
it is amplified, and its width decreases witlasw(z) = wp(1— cpf82). It is important to stress
that the limitco3z — 1 cannot be attained in practice not only because it requifgste gain

but also because the higher-order effects not included ilBgvould stop the compression
process well before this limit is reached.

The opposite case for whiadaf < 0 in Eq. (14) is also interesting. In this case, similaritons
exist if fiber losses decrease withand the similariton width increases continuously. It is re
markable that stable similaritons can form in a lossy, cmtstlispersion fiber, a possibility that
does not appear to have been noticed so far. In practice|d&srs can be madalependent by
pumping the fiber suitably so that the Raman gain compenfatagart of the total loss. The
second row of Figure 1 shows the evolution of the fundamemtght and dark similaritons in
this case. All parameters are the same, but the sign oflioligo has been reversed to ensure
thatcof3 < 0. As expected from the relatiom(z) = wo(1 — cpf3z), the widths of both types of
similaritons broaden by a factor of 1.6at 6 becauseyf3 = —0.1 in this example. Note also
that the pulse center shifts as dictateddfy) in Eq. (8) becausey = 2 in all cases shown in
Fig. 1.

As another example, consider a fiber whose dispersion desezxponentially along its
length such thaB(z) = Boe~ 9% The new feature in this case is that the accumulated dispers
D(z) does not keep increasing withbut approaches a constant valuef®fo at distances
such thatoz > 1. As a result, the width of the similariton inside such an Hiiep decreases
initially but eventually becomes constant with a valyg= wo(1— cofo/W30). Figure 2 shows
the gain profileg(z) for which the compatibility condition is satisfied, togethvéth w(z), for
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Fig. 2. (a). Amplifier gaing(z) and (b) similariton widthw(z) as a function ofz/Lp for
several values off in the casey = —0.1 andf3; < 0.
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Fig. 3. Evolution of the fundamental (a) bright and (b) dark similaritover & p in the
specific case ofr = 0.1.

co = —0.1 and several values of with the dispersion lengthp = w%/|[30\ providing the length
scale. The required gain or loss is relatively small and gharalong the fiber length slowly. In
particular, it vanishes foo = 0.1. Note also that the required gain becomes negative for
0.1, indicating again that similaritons can form in a lossy fighese features of dispersion-
decreasing fibers are well known and have been discussed.if1Ble Similaritons can undergo
compression inside such a lossy fiber because decreaspeyslan provides an effective gain
that can exceed fiber losses.

The evolution of the fundamental bright and dark similarg@ver eight dispersion lengths
is displayed in Fig. 3 for the specific cage= 0.1 for which the required amplifier gain is zero.
As before, pulses are chirped initially such that = 0.1. All other parameters are identical to
those used in Fig. 1. In both cases shown in Fig. 3, the fundeh&milariton compresses and
its position shifts because of the chirp imposed on it. Awotthy feature is that the trajectory
of the pulse center does not follow a straight line that wasctise in Fig. 1. This observation
can be understood from the expressionti(z) in Eq. (8) and the fact theb(z) tends to a
constant for large values af

We now briefly discuss the common case of dispersion manageimeavhich two fibers
with constant but opposite kinds of dispersion are combinea periodic fashion to form a
dispersion map [20]. Our solution applies to this case as Wwefact, the situation is similar
to the constant-dispersion case discussed earlier, bee¢hescompatibility condition in Eq.
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(9) reduces t@(z) = Bc(z) in each fiber section. The main difference is that, as the sfgn
B changes from one section to the next, the gain of fiber shdal change sign, i.e, if the
section with anomalous dispersion exhibits gain, the nbdispersion section must be lossy.
In the specific case in which the magnitude of dispersiondsstime for all section8)(z) is a
periodic function such that it returns to zero after each penod. As a result, the pulse width
and chirp also vary in a periodic manner.

4. Elastic collisions of self-compressing similaritons

Since our similaritons are related to standard solitonsuijin a simple transformation, we
expect them not only to be stable but also to survive mutubismms. To study collisions
of similaritons, we focus on the specific case of two identizéght similaritons B(z) < 0],
separated initially in time, but moving with opposite vet@s so that they begin to overlap
and interact with each other. It follows from the standariit@o theory based on the inverse
scattering transform [18] that the combined intensity peadf the two such similaritons can be

written as X

0
2
whereM is a matrix whose determinant is given by

detM = 1+ (MHni+dn) | @N2+n5+8%2) _ 2(MAny+012) _ 2Ny +N2+015) 4 K ghReEML+12) (16)
K = e2(%11+%2) + 2(012+005) _ 9e(O11+020+812+375) (17)

The parameterg; anddjk (j,k = 1,2) are defined as

. : ril/(2vj), =k
i =iAj(X+Aj0), e51'<:{ Jril/v, 18
M=) (F Y2 (A - A7), | #K (s)
Here,r; are the residues of direct scattering data anek uj +iv; (j = 1,2) are the discrete
eigenvalues specifying the amplitude and velocity of @rgpliton solutions of Eq. (4).
Consider the behavior of the two-similariton field in thearefince frame moving with thigh
similariton. The trajectory of this similaritom,; -+ nj* = const., can be expressed as

T — To+ (CoTo+ bo — 21 /Wo)D(2)
1-coD(2)

Whency < 0, each similariton compresses on propagation in a fiberavibtmalous dispersion
[B(2) < Q]. It follows from Egs. (5), (18), and (19) that in the intal0 <z < z,, n3_j — » as
z— z,, wherez, is a solution of the equation,1|coD(z,)| = 0. From Egs. (15) and (16), the
intensity profile of thejth similariton in the limitz— z, has the asymptotic form

= const. (19)

1j(X, ) ~ 4viA%(z) sech(2v; (X +214;0) +Aj], (20)

where the shiff\; of the similariton center position is given by

Aj = _% In[e?%ii + 2(012+0[= 83 j3-j) _ 9e(O12+05+3j] *53—1.3—1)]. (21)
Thus, similar to the soliton case, the self-compressingdirsirhilariton solutions can be inter-
preted in terms of elastic collisions of continuously ewofyfundamental similaritons.

To illustrate numerically the behavior of similaritons mpeollisions, we consider a simple
nontrivial example of two colliding single-similariton |ses of equal amplitudes{ = v, =

#79310 - $15.00 USD Received 23 January 2007; revised 20 February 2007; accepted 20 February 2007
(C) 2007 OSA 19 March 2007 / Vol. 15, No. 6/ OPTICS EXPRESS 2969



Time, T

Time, T

4 5 6 7 8
Distance, z
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Fig. 4. Collision of two bright similaritons inside a constant-dispersion fibmy)(and a
dispersion-decreasing fiber (bottom) wigh= 0.2. In both casesy = —0.1.

v) and phases traveling with the opposite velocitips£€ — > = ). The initial positions of
the similaritons are chosen such that=r} = (2v/u)(u +iv). Under such conditions, we
have obtained an explicit analytical expression for the lwoed intensity profile of the two
colliding similaritons, but it is too cumbersome to preskete. We only point out that, under
such conditions, the center position of each similaritoifiess a shift,A = In(y/u2+v2/u),
during collision.

We now illustrate elastic collisions of similaritons forethwo specific dispersion profiles of
Section 3. Figure 4 displays the collision of two bright daritons inside a constant-dispersion
(top) and inside a dispersion-decreasing fiber waith 0.2 (bottom). Notice from Fig. 2 that
the required gain is negative for the dispersion-decregafiver, i.e., the similaritons collide
inside a lossy fiber. In both cases, we yse- 1.2, v = 0.8 andcy = —0.1. The collision is
elastic in both cases and displays qualitative featurasatteawell-known for standard soliton
theory with only minor differences. In the case of constaspelrsion, solitons follow a straight
trajectory, before as well as after the collision. In costiréhe trajectories are curved for the
dispersion-decreasing fiber.
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Fig. 5. Collision of two bright similaritons inside a constant dispersion fitiee.similariton
parameters arg =1, v =1, andcg = 0.

5. Interactions of chirp-free similaritons

So far, we have focused on chirped similaritons. In the c&aechirp-free similariton¢y = 0),
the similariton width does not change on propagation. Ttedyais of Egs. (16) and (18) for
this situation leads to the conclusion that, when the d8peisatisfies the asymptotic condition

lim D(z) = oo, (22)

Z— 00
the two-similariton field breaks into two single similari®whose asymptotic intensity profiles
are of the form

1j(1,2) ~4v?A?(2) Secﬁ{ivvj[T-i-KjD(Z)] +23,—}, (23)
0

wherek; = by — 2u; /wo andA; = Aj — 2v;To/wo. In this case, the similariton interaction can
be interpreted as an elastic collision, and a specific caflastrated in Fig. 5 for a fiber with
constant dispersion using the paramejers 1 andv = 1 with cp = 0. Recall that the similari-
tons reduce to standard solitons under such conditionshesiidwidth does not change during
propagation.

If the asymptotic condition (22) is not met, the similaritorteraction leads to the forma-
tion of a bound state of two similaritons. To illustrate sw@chituation, we consider again the
case of a dispersion-decreasing fiber but choose a relatargle valueo = 0.8. In this case,
lim,..D(z) = Bo/0, and the asymptotic condition in Eq. (22) is not satisfiede Thllision
of two chirp-free similaritons in this case is shown in Figuengu =3, v=1, 0 = 0.8,
andcg = 0. This figure shows clearly that, after the two pulses cellithey become trapped
and move together as one unit. We refer to such a state as #afitiom molecule,” bound to-
gether through the nonlinear interaction mediated by theszphase modulation. Notice that
the compatibility condition now correspondsg() = — o, implying a constant loss along the
fiber. This is generally the case in practice. Thus, we haseodiered that stable similariton
bound states can propagate inside a lossy fiber, provideddigersion decreases along its
length.

#79310 - $15.00 USD Received 23 January 2007; revised 20 February 2007; accepted 20 February 2007
(C) 2007 OSA 19 March 2007 / Vol. 15, No. 6/ OPTICS EXPRESS 2971



Time, T

0 1 2 3 4 5 6 7 8
Distance, z

Fig. 6. Formation of a two-similariton bound state upon collision of two brightlaritons
inside a dispersion-decreasing fiber with= 3, v =1, 0 = 0.8, andcg = 0.

6. Bound states of two spreading similaritons

In the case of collision shown in Fig. 6, the tails of two eniieggsimilaritons overlap, but
each similariton still maintains its own identity. A veryfférent situation occurs when two
spreading similaritons collide inside a fiber such that thaptotic condition (22) is not met.
Indeed, our analysis of Egs. (16) and (18) shows that a ramitilariton solution never breaks
up into single similaritons in the casgB(z) < 0 in which the similariton width increases with
distance, regardless of a particular form of the dispersiap.

We illustrate the bound-state formation of two similargoim the case of a dispersion-
decreasing fiber in Fig. 7 using the same parameter valuelsoas used in Fig. 6, except
thatco = 0.2. Since the fiber is assumed to exhibit anomalous dispersifiiz) < 0, and the
width of similaritons increases as they collide. As is digaeen in the figure, after the two
similaritons collide, they fail to separate and form a bostate. The fringe pattern across the
temporal profile of the two pulses results from their tempoverlapping. We stress that this
behavior holds irrespective of a particular functionahfiaof 3(z). In this sense, the evolution
scenarios discussed in this paper are universal for allaiitoins of Eq. (1).

7. Conclusions

In summary, we have modeled the propagation of optical pursgde a fiber with nonuniform
dispersion and gain by an inhomogeneous NLSE. We show thrasgmilarity transformation
that a one-to-one correspondence exists between the sionkathat are analytical solutions
of this equation and the standard solitons that are analysiclutions of the homogeneous
NLSE, provided a certain comparability condition is sa¢idfiThis correspondence guarantees
the stability of the novel bright and dark similaritons. Asexample, we focus on two specific
dispersion maps and discuss the different similaritorufestassociated with them. In general,
whenever the similaritons are chirped, their initial chigplays an important role through the
productcyB. If this quantity is positive, the similaritons are selfrepressed and amplified.
In contrast, ifcoB is negative, similaritons can form even in a lossy fiber, bey/tspread on
propagation along the fiber.
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Fig. 7. Formation of a two-similariton bound state upon collision of two brightlaritons
inside a dispersion decreasing fiber wih= 0.2. All other parameters are identical to
those used in Fig.6.

Our results indicate deep similarities as well as qualigatlifferences between solitons in
homogeneous media and similaritons in inhomogeneous m&diahow that, despite the exact
integrability of the nonlinear system, the interactionistn two such similaritons can result in
either an elastic collision in which the two similaritongpexience a temporal shift but separate
from each other after the collision, or in the formation of @ubd state of two similaritons
representing a similariton molecule. Which scenario takasepin a specific case depends on
the sign of the overall similariton chirp and the asymptptioperties of the medium dispersion

map.
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