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Optical similaritons in nonlinear waveguides
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We discover analytically an extensive family of optical similaritons, propagating inside graded-index non-
linear waveguide amplifiers. We show that there exists a one-to-one correspondence between these novel
similaritons and standard solitons of the homogeneous nonlinear Schrédinger equation. We demonstrate
that for certain inhomogeneity and gain profiles, the newly discovered similaritons turn into solitons over
sufficiently long propagation distances. © 2007 Optical Society of America
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Until recently, shape-preserving optical beams and
pulses have been chiefly studied in passive, homoge-
neous, nonlinear systems [1,2]. Lately, however, a
powerful generalization of the inverse scattering
technique [3-5] has been developed to identify inte-
grable inhomogeneous nonlinear systems and ana-
Iytically determine stable shape-preserving waves
supported by such systems [3—6]. In general, the dis-
covered shape-preserving optical waves are self-
similar structures maintaining their identity upon
interactions. This circumstance prompted coining of
the term similariton for such waves [7]. To date, tem-
poral optical similaritons have been studied in homo-
geneous fibers and fiber amplifiers [8-10] as well as
in dispersion-managed fiber amplifiers with distrib-
uted gain or loss [11-14]. The similariton interac-
tions have also been investigated, and the possibility
of bound-state multisimilariton formation upon simi-
lariton collisions was demonstrated [15].

However, much less attention has been paid to
studying the behavior of solitons and self-similar
waves in nonlinear systems exhibiting both spatial
inhomogeneity and gain or loss [16] at the same time.
A subtle interplay between the linear gain or loss, dif-
fraction, and the inhomogeneity on the one hand, and
the nonlinearity of such systems on the other, can re-
sult in a rich variety of shape-preserving waves with
interesting properties.

In this Letter, we elucidate generic properties of
(1+1)D shape-preserving waves in such systems by
focusing on a specific example of tapered, graded-
index, nonlinear waveguide amplifiers. The refrac-
tive index for such a system is given by

n(x,2) = ng+n1F@)x? + nol(x,2), (1)

where the first two terms describe the linear contri-
bution to the refractive index and the last intensity-
dependent term represents the Kerr nonlinearity. We
assume n,>0, but the dimensionless profile function
F(z) can be negative or positive, depending on
whether the graded-index medium acts as a focusing
or defocusing linear lens. The Kerr parameter n, is
positive for nonlinear self-focusing but becomes nega-
tive in a self-defocusing medium.

The paraxial wave evolution corresponding to
n(x,z) in Eq. (1) is governed by the inhomogeneous
nonlinear Schrodinger equation (NLSE) of the form
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where + (=) corresponds to the case of self-focusing
(self-defocusing). The dimensionless variables are Z
=z/Lp, X=x/w,, and U=(ko|ny|Lp)"?u, where k,
=2mny/\ is the wavenumber at the input wavelength
N and Lp=kow? is the diffraction length with w,
=(2kZn,)"V4. Further, G(Z)=[g(z)-a(2)]Lp is a di-
mensionless net gain, where g and « account for lin-
ear gain and loss, respectively; G>0(<0) implies a
net gain (loss) of energy in the system.

The aim of this Letter is to demonstrate that there
exists a simple transformation that reduces Eq. (2) to
a standard, homogeneous NLSE, which is well
known to be integrable by the inverse scattering
technique [17]. As a result, we uncover a one-to-one
correspondence between any soliton of a homoge-
neous NLSE and a stable self-similar wave of the in-
homogeneous NLSE, the stability of the latter follow-
ing from the stability of the former. We also show
that, for certain gain and index tapering profiles,
there exists a subclass of similaritons of Eq. (2) that
turn into true solitons over sufficiently long propaga-
tion distances.

We start by seeking a solution to Eq. (2) of the form

—C(Z) L2) e PX.2) (3)
wz) ’ ’

UX,Z) =A(Z)\If[
where A(Z), W(Z), and X.(Z) are the dimensionless
amplitude, width, and guiding-center coordinate of
the beam, respectively. We assume a quadratic an-
satz for the global phase:

®(X,Z)=C(Z)X?*/2+B(2Z)X+D(Z). (4)

Substituting Eqgs. (3) and (4) into Eq. (2), we obtain a
set of first-order differential equations for the param-
eters of transformation (3) such that the transformed
field ¥ satisfies the standard, homogeneous NLSE:

gY 1PV

— +——— = V2V =0. 5
el &)

Here the effective propagation distance ¢ is given by
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and we have introduced the similarity variable y as
XX,2)=[X-X(Z) YW (Z). (7)
The guiding-center position is given by the expres-
sion
X(Z) =X+ BoZ)/W(Z), (8)
where B(0)=B, and we chose W(0)=1.

The final form of the transformation from Eq. (2) to
Eq. (5) can be written as

X - (Xo+ByZ)IW )]

W
iX2dW iB,X iBZ z dS
Xexp| ——— + -— | =l
owdz w2 J, WAS)

9)

where the (dimensionless) similariton width W(Z)
obeys the following simple, second-order, differential
equation

1
UX,Z)= W(Z)‘I{

d*W/dZ* - F(Z)W =0. (10)
We emphasize that transformation (9) can be realized
only if the dimensionless gain and similariton width
are related as

G(Z2)=-d[In W(Z)}/dZ. (11)
Transformation (3), which represents a combination
of gauge and similarity transformations, together
with a generalized scaling with respect to the Z vari-
able, reduces Eq. (2) to the exactly integrable homo-
geneous NLSE [17]. It is instructive to compare our
approach with that previously employed in a related
context and termed the generalized inverse scatter-
ing method [5]. One of the new features of our
method is an explicit Galilean invariance of all novel
similariton solutions in the transformed variables.
Consequently, one can obtain a wider class of shape-
preserving solutions than those discussed in Refs.
[5,6] by admitting arbitrary relative soliton/
similariton velocities as free parameters. Another
novel degree of freedom is provided by the choice of
By, which specifies the initial position of the phase-
curvature center and determines the dynamics of the
guiding-center similariton.

Bright and dark similaritons. As an example, it fol-
lows readily from the well-known single-soliton solu-
tions of the homogeneous NLSE [17] that the inten-
sity profile I=|U|? of the most general bright single
similariton is given by

Ig(x,0) = (@*/W*)sech®[a(x-v{)], (12)
where a and v are the soliton amplitude and velocity,
the latter being an additional free parameter. In the
same way, the intensity profile of the dark single
similariton is found to be

Ip(x,0) = (ug/W?)[cos*(p)tanh?*(©) + sin®(#)],  (13)
where 1 is the background amplitude and ¢ governs
the grayness and speed of the dark soliton. The soli-
ton phase O is defined in terms of these two param-
eters as [18]

O(x,{) =ug cos(P)[ x — uol sin(p)].

To gain further insight into the dynamical behavior
of the novel similaritons, we consider some specific
cases. We begin by observing that Eq. (10) is formally
identical to a wave equation governing the modes of
an inhomogeneous planar waveguide with the refrac-
tive index profile given by the function F(Z). It then
follows from the theory of sech?-profile waveguides
[19] that the lowest-order mode of such a waveguide
corresponds to

F(Z)=1-2sech?2),

(14)

W(Z) =sech(Z). (15)

From the compatibility condition in Eq. (11), the re-
quired gain profile is found to be G(Z)=tanh(Z).

The gain, width, and tapering profiles are dis-
played in Fig. 1(a). It can be seen from the figure that
the tapering function F(Z) crosses zero near Z=1, im-
plying that the linear inhomogeneity of the wave-
guide should change from focusing to defocusing
type. The required normalized gain G(Z) is zero ini-
tially and tends toward 1 asymptotically for large Z.
Such a gain distribution can be realized, for example,
in an erbium-doped waveguide by suitably adjusting
the density of the dopants. The similariton width un-
der such conditions decreases monotonically. Hence,
solutions (12) and (13), with the width profile speci-
fied in Eq. (15), describe self-focusing bright and dark
fundamental similaritons. Their evolution with Z is
displayed in Fig. 2, using the values B;=0.3, v=0.3,
a=uy=1, and ¢=0.

Similaritons and solitons. A very interesting sub-
class of new similaritons is obtained for the tapering
profile F(Z)=-2 sech®(Z+Z-), which leads to the fol-
lowing width profile:

WZ =tanh(Z + Z+)/tanh(Z.). (16)

Here Z.: is a positive constant, characterizing the
asymptotic value of the similariton width, W,
=tanh }(Z:). The evolution of fundamental bright
and dark similariton corresponding to W(Z) in Eq.
(16) is shown in Fig. 3, using Z-=0.5. Other param-
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Fig. 1. Gain, width, and tapering profiles, plotted as func-
tions of Z, for two specific choices of F(Z) discussed in the
text.
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Fig. 2. Evolution of the fundamental (a) bright and (b)
dark similaritons over two diffraction lengths under condi-
tions of Fig. 1(a). Other parameters are specified in the
text.

eters are the same as those used in Fig. 2. The corre-
sponding tapering and gain profiles are shown in Fig.
1(b). Note that the gain G is negative (lossy medium)
and tends toward zero for large Z. The width W, how-
ever, increases with Z, in spite of linear as well as
nonlinear focusing, before attaining (asymptotically)
a constant value, leading to soliton formation over
just a few characteristic diffraction lengths. For ex-
ample, in the case of Z+=0.5 shown in Fig. 3, W dif-
fers from its asymptotic value by about 1% at z
=2Lp, and this difference becomes less than 0.2% at
a propagation distance of 3Lp.

As a proof of the elastic character of the similariton
interactions, we display in Fig. 4 the collision of two
bright similaritons of equal amplitudes moving with
equal but opposite velocities. For Z <2, the width and
amplitude of each similariton is not constant, and its
center moves according to Eq. (8). However, solitons
form soon afterward as seen in the figure. Similar
collision features occur for temporal similaritons [15].

In summary, we have found analytically a new
class of exact self-similar waves supported by inho-
mogeneous gain media. The dynamical evolution of
such waves is governed by a generalized inhomoge-
neous NLSE, which is shown to be exactly integrable
by mapping it into the standard homogeneous NLSE.
We have also discovered a subclass of the novel simi-
laritons whose linear dimensions do not change in
the long-propagation-distance limit, resulting in ef-
fectively static soliton solutions. The novel similari-
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Fig. 3. Evolution of (a) bright and (b) dark similaritons
over 3 diffraction lengths for the width and gain profiles of
Fig. 1(b). Notice that solitons already form within 2 diffrac-
tion lengths.
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(Color online) Collision of two bright similaritons,

which turn into solitons for large Z.

tons can serve as self-induced waveguides for guid-
ing, amplifying, focusing and switching weak optical

be

ams in inhomogeneous gain media. A graded-

index, planar silica waveguide with erbium doping
may be used for experimental realization of spatial
similaritons discussed here. Another possibility is a

su

itably pumped dye-filled cell [20] in which density

variations produce an index gradient.
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