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Dark and antidark diffraction-free beams
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We present dark and antidark diffraction-free beams and discuss their properties. We show that all such
beams must be partially spatially coherent. The new beams can be used for optical trapping of atoms.
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Optical waves and pulses that are immune to diffrac-
tion and dispersion have been in the focus of atten-
tion of the optical community owing to their particle-
like behavior, which may be useful for many potential
applications. It is often believed that the formation of
such wave packets requires a nonlinear medium. In-
deed, the entire field of soliton optics is devoted to
studying the possibility of balancing dispersion or
diffraction with the nonlinear response of an optical
medium [1].

To date, two profoundly different kinds of optical
solitons have been discovered, bright and dark ones.
While a bright soliton intensity profile falls off with
the distance away from the soliton center, a dark soli-
ton profile has a dark notch at the center, with the
intensity increasing toward the soliton periphery and
tending to a constant value, known as a cw back-
ground intensity [2]. As the antidark solitons are mir-
ror images of the corresponding dark ones, their in-
tensity profiles appear as bright (higher intensity)
spots on a cw background. The fundamental differ-
ence between bright solitons on one hand and dark or
antidark solitons on the other, is that the former
carry a finite amount of energy whereas the latter do
not.

Perhaps somewhat surprisingly, nonspreading
wave packets can also form in free space or linear
media. However, to satisfy the standard Fourier reci-
procity relation [3], any nonspreading linear wave
packet must contain infinite energy. Many such solu-
tions of the paraxial and nonparaxial optical wave
equations have been found to date [4-12]. To our
knowledge, however, all nonspreading beams and
pulses discussed in the literature thus far can be
classified as bright. A fundamental question thus
arises: Do there exist dark or antidark diffraction-
free beams whose intensity profiles have the features
similar to those of dark or antidark solitons?

In this Letter, we address this issue by demon-
strating that such diffraction-free beams can indeed
be generated, provided spatial coherence of the
beams is less than perfect. We stress that the re-
quirement that dark and antidark diffraction-free
beams be necessarily partially spatially coherent is a
novel and surprising feature, which has no analog in
the soliton realm. We explain a physical origin of par-
tial spatial coherence of the new beams and propose a
method for their experimental realization. We also
briefly compare basic features of dark and antidark

0146-9592/07/172508-3/$15.00

diffraction-free beams with those of the correspond-
ing solitons.

We begin by considering a partially coherent beam
whose free space propagation is governed by a
paraxial wave equation of the form [13]

(2ikod, + V21 = Vi) W(ps,ps,2) = 0. (1)

Here the cross-spectral density function, W(p;, py,2)
=(U"(p1,2)U(py,2)), specifies second-order correla-
tions of the optical fields U at a pair of points with
the positions, defined by the radius vectors p; and p,
in any transverse plane z=const>0 of the beam; &
=wy/c, and the angle brackets denote the ensemble
averaging [14].

General structure of partially coherent diffraction-
free beams. As pointed out in [15,16], the cross-
spectral density of any diffraction-free beam must be
independent of z. To obtain a general form of the
cross-spectral density of optical fields associated with
such beams, we express Eq. (1) in the new variables
r=py-p; and R=(p;+py)/2 as

(ikod, + V.- Vo) W(r,R,z) = 0. 2)

It then easily follows from Eq. (2) that a general
z-independent solution is given by the expression

Widr,R) = d(r) + ¥(R), 3)

where ® and V¥ are arbitrary functions. The cross-
spectral density of Eq. (2) represents a physical beam
only if it is Hermitian and nonnegative definite. The
Hermiticity follows from the definition of the cross-
spectral density and implies that [14]

W(ps,p1,2) = W (py,p2,2). (4)

It follows at once from Eq. (3) that W;ris Hermitian if
the independent functions ® and V¥ satisfy the condi-
tions

Y R)=V[R), P(xr)=D(-r). (5)

The nonnegative definiteness means in physical
terms that the beam carries a positive or zero
amount of energy. Mathematically, it can be repre-
sented by the inequality

© 2007 Optical Society of America



September 1, 2007 / Vol. 32, No. 17 / OPTICS LETTERS

f J (311’1(1132‘/‘7¢1,‘(I’1,P2)]ﬁk (pf(p2) =0, (6)

which must hold for any square-integrable function f
[14]. Alternatively, the cross-spectral density can be
expanded in a series of coherent modes as

Wadp1,p2) = 2 M, (p)u,(p2), (7)

and the nonnegative definiteness is guaranteed by
the requirement that the modal weights A,, specify-
ing the powers carried by the modes, be real and non-
negative:

A\, =0. (8)

Equations (3), (5), and (6) or (8) determine all pos-
sible partially coherent diffraction-free beams.

Dark and antidark diffraction-free beams. Let us
now focus on a particular class of partially coherent
diffraction free beams whose cross-spectral density is
given by the expression,

Warp1,p2) = Jo(Blp1 — pal) + ado(Blp1 + p2)),  (9)

where a and B are arbitrary constants, 8 being real
valued, and J(x) is a zero-order Bessel function. The
intensity of any such beam is

Lidp) = Wydp,p) = 1 + ae o(28p).

It readily follows from Eq. (10) that for any physical
beam, I;,=0, resulting in the following constraint on
the values of a:

(10)

la] = 1.

(11)

To show that condition (11) guarantees that Eq. (9)
describes physical beams and gain further insight
about the new beams, we derive a coherent mode ex-
pansion of the cross-spectral density of Eq. (9). With
this purpose, we recall the so-called summation theo-
rem for Bessel functions [17]:

a =a,

Jo(Blp1 T pol) = D (21)mei™ 29, (Bpy)e],(Bpo).

m=—o

(12)
It can be inferred from Eqgs. (7), (9), and (12) that

Wadp1,p2) = 2 Nt () Yin(p2), (13)

m=-»®

where the coherent modes are Bessel beams such
that

Un(p) = J,u(Bp)e™?, (14)
and the modal weights are found to be given by
Ap=14+(-1)"a. (15)

It can be easily concluded from Egs. (11) and (15) that
nonnegativity criterion (8) is satisfied for the novel
beams.

Qualitatively, the cross-spectral density of Eq. (9)
describes dark (a<0) or antidark (a>0) diffraction-
free beams. The corresponding intensity profiles are

2509

displayed in Fig. 1 for the two values of the param-
eter a=1,-1. It is seen from the figure that the value
a=-1 leads to “black” diffraction-free beams with a
dark notch in the center. The analysis of Eq. (6) fur-
ther reveals that in the interval -1<a<0 we have
“gray” diffraction-free beams. In this connection, it is
interesting to note that the partially coherent dark
solitons were shown to be necessarily gray [18].

The coherent mode expansion of the present dark
and antidark diffraction-free beams hints at a pos-
sible way of generating them in the laboratory. It can
be noticed that a diffraction-free beam can be ob-
tained as an incoherent superposition of a finite num-
ber N of Bessel modes of Eq. (14) as Wg}\p(pl,m)
MEZn\Z:_N)\mz,[/fn(pl)z/fm(pz), which does satisfy Eq. (1) as
any Bessel mode is a solution to the equation V¢,
=—f2%,,. The incoherent superposition of Bessel
modes can be realized in experiment by adding up
the outputs of several independent sources, each of
which is generating a particular Bessel mode. Coher-
ent Bessel modes can be produced, for instance, using
the arrangement proposed in [6]. By choosing the
modal weights given by Eq. (15), and adding up a suf-
ficiently large number of modes, we can approximate
the ideal dark (antidark) diffraction-free beam profile
to good accuracy. In particular, one such fit is exhib-
ited in Fig. 2 for dark diffraction-free beams. It is
seen in the figure that the approximation is so good
that the intensity profile of the ideal black
diffraction-free beam, plotted in a solid curve, is prac-
tically indistinguishable from its fit with N=25 un-
correlated Bessel beams, displayed in a dashed curve,
so long as the distance from the beam center satisfies
the condition Bp<20. In the tails of the beams, how-
ever, the two intensity profiles significantly deviate
from each other. Our numerical simulations indicate
that the number of modes mostly affects the behavior
of the tails, not the central spot of the beam. Such a
behavior persists for any N, and hence to accurately
approximate a greater portion of an ideal beam, one
would need a larger number of the Bessel modes. For-
tunately as a dark or antidark diffraction-free beam
is generated in the laboratory, the tails of the beam
produced by a desired number of Bessel modes, will
be “cut” by finite apertures of a source and measuring
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Fig. 1. Intensity profiles of dark (dashed curve) and anti-

dark (solid curve) diffraction-free beams with a=-1 and 1,

respectively.



a diffraction-free beam, U(p,z) <« U+ Udf(p)ei”z. How-
ever, the combined field will not be diffraction free
due to the presence of the interference (beat) term in
the expression for the intensity profile I(p,z)
=|U(p,z)%. In the partially coherent case, all Bessel
modes are superposed incoherently such that no in-
terference terms are present, and as a result, a
diffraction-free dark or antidark beam is formed.

Finally, we mention that the present dark
diffraction-free beams can serve as atomic traps. The
atoms can be trapped in the vicinity of a dark notch
of the beam where the optical field vanishes.
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