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Abstract: We demonstrate numerically that the power transfer from one
polarization component of a (1 + 1)D vector spatial soliton to the other
in a birefringent nonlinear medium can be controlled via the electro-optic
Kerr effect by varying the externally applied electric field. We show how
several all-optical operations involving fundamental vector solitons can
be electronically controlled. We also discover that the split-up of the
higher-order vector solitons due to the two-photon absorption (TPA) can
be suppressed by adjusting the external electric field. The soliton trapping
along the slow optical axis is realized by a planar waveguide, filled with a
silicon-nanocrystal material. The external electric field is applied along the
fast optical axis of the waveguide.
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1. Introduction

The operation of various all-optical devices, ranging from all-optical waveguide switches to
distributed feedback couplers, relies on the power exchange among linearly and/or nonlinearly
coupled optical fields [1]. A good deal of research has so far been carried out on the power
transfer between the two (orthogonal) polarization components of vector spatial or temporal
solitons, supported by nonlinear waveguides or fibers, respectively [2–5]. Nonlinear coupling
of two orthogonally polarized beams has also been studied in connection with the signal am-
plification in AlGaAs channel waveguides [6]. In this case, not only are the two polarization
components coupled via the cross-phase modulation, but they are also linearly coupled due to
weak waveguide birefringence resulting from the waveguide design. Furthermore, as the di-
rections of the fast and slow axes, assumed to correspond to the TE and TM polarizations,
respectively, are fixed at the waveguide fabrication stage, the direction of the energy flow is
also fixed. It is therefore only possible to amplify a weaker TE component at the expense of a
stronger TM component. To reverse the energy flow direction, a π/2 phase difference between
the two modes must be imposed.

To control the direction of the all-optical power transfer between the two orthogonally po-
larized modes of a waveguide or soliton polarization components, one could propose using the
linear electro-optic effect by applying an electric field across the waveguide. Although the linear
electro-optic effect in LiNbO3 waveguides – a popular choice for integrated optics applications
– has been thoroughly studied elsewhere [7, 8], it can only take place in nonlinear media with
broken inversion symmetry [9]. The latter circumstance severely restricts the range of potential
applications of the linear electro-optic effect to the optical power exchange control.

In this paper, we focus on a different possibility. As most optical materials exhibit the third-
order nonlinearity, we propose to use the corresponding quadratic electro-optic effect to elec-
tronically control the power exchange between the vector spatial soliton components. Such
an interesting emerging paradigm – controlling all-optical operations electronically [10] – can
prove quite attractive for the future all-optical networks employing spatial solitons, as it is a
relatively easy matter to adjust the properties of the electric fields.

In this work, we present the first proof-of-the-principle results and relegate the study of
practical devices for the future. We will refer to the soliton component which acquires the power
as the “signal” and the other soliton component as the “pump”. In this language, we can realize
the amplification of either a TE signal by a TM pump or a TM signal by a TE pump, regardless
of the relative amplitudes of the TE and TM soliton components at the input. We demonstrate
that the conversion efficiency of higher than 90% can be achieved for the fundamental vector
solitons. Moreover, we show that the TPA-induced splitting of a high-order vector soliton into
fundamental solitons can be suppressed by adjusting the magnitude of the external electric field.
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Our analysis indicates that an “ideal” material for the realization of electronically control-
lable soliton power exchange must have a large third-order optical susceptibility coefficient
such that the induced birefringence is comparable with the intrinsic modal birefringence. In
addition, the “ideal” material must possess very small linear and nonlinear losses. We show
that most of the desired functionalities can be realized employing a silicon-nanocrystal-based
material.

This work is organized as follows. In Section 2, we show how the set of coupled (1 +
1)D nonlinear wave equations, governing the propagation of vector solitons in nonlinear
waveguides, can be modified by including the external-field induced linear birefringence terms.
In Section 3, we numerically investigate the electric field control of the all-optical power trans-
fer from one component of the vector soliton to the other. We then present our conclusions in
Section 4.

2. Theory

Consider an optical beam, propagating in an isotropic nonlinear medium in the planar
waveguide geometry as indicated in Fig. 1. The beam propagation is mediated by an electric
field Eext , applied along the y-axis. The electric field of the optical beam can then be represented
as

E =
1
2
[axExe

−iω0t +ay(Eye
−iω0t +Eext)]+ c. c. (1)

Fig. 1. Slab waveguide geometry (Ref. [4], Fig.1)

The dielectric response of the medium is assumed to be isotropic and of electronic origin. The
third-order dielectric susceptibility tensor of any such medium is given by the expression [11]

χ (3)
i jkl =

1
3

χ (3)
xxxx(δi jδkl + δikδ jl + δilδ jk). (2)

The nonlinear polarization field, generated by any Kerr-type nonlinear medium, can be written
as

PNL = ε0χ (3)...EEE. (3)

It follows from Eq. (1) – (3) that the component of the polarization vector at an optical fre-
quency ω0 takes the form

PNL =
1
2
(axPx +ayPy)e−iω0t + c. c., (4)

#95045 - $15.00 USD Received 15 Apr 2008; revised 4 Jun 2008; accepted 5 Jun 2008; published 13 Jun 2008

(C) 2008 OSA 23 June 2008 / Vol. 16,  No. 13 / OPTICS EXPRESS  9589



where

Px =
3ε0

4
χ (3)

xxxx

[
(|Ex|2 +

2
3
|Ey|2)Ex +

1
3
(E ∗

x Ey)Ey +
4
3

E2
extEx

]
, (5)

Py =
3ε0

4
χ (3)

xxxx

[
(|Ey|2 +

2
3
|Ex|2)Ex +

1
3
(E ∗

y Ex)Ex +4E2
extEy

]
. (6)

In the derivation of Eqs. (5) and (6), we assumed the nonlinear dispersion to be small enough
that the third-order optical susceptibility does not significantly depend on frequency in the
spectral range of interest, implying that

Re{χ (3)
xxxx(−ω0,ω0,−ω0,ω0)} � Re{χ (3)

xxxx(−ω0,ω0,0,0)}. (7)

Throughout the rest of the paper, we also assume that the imaginary part of χ (3)
xxxx(−ω0,ω0,0,0)

is negligible, but the corresponding part of χ (3)
xxxx(−ω0,ω0,−ω0,ω0) is not. The latter as-

sumption holds true for many semiconductor materials for which the two-photon absorption
processes, responsible for nonlinear losses, can play an important role in the frequency range
Eg < 2h̄ω0 < 2Eg, where Eg is the band-gap energy [12].

The nonlinear wave equation, governing beam propagation, can be written in the form

∇2E− 1
ε0c2

∂ 2D
∂ t2 = μ0

∂ 2PNL

∂ t2 . (8)

Here D = ε0E + PL, where PL = ε0χLE is a linear polarization field. In the usual quasi-
monochromatic and slow-varying envelope approximation, the solution to (8) in the waveguide
geometry can be sought in the form

E j(x,z) = F(y)u j(x,z)eiβ j z, (9)

where F(y) is a spatial mode profile of the single-mode waveguide, u j(x,z) are slowly varying
amplitudes of the components j = x,y. It is convenient to numerically analyze the optical power
exchange in the circular polarization basis; the circular polarization components are related to
the linear ones via the transformation

u1 =
ux + iuy√

2
e2iκZ ; u2 =

ux − iuy√
2

e2iκZ . (10)

Substituting from Eq. (9) into (8), averaging over the waveguide mode profile in a standard
way [11], and making use of the transformation (10), we obtain a set of the coupled nonlinear
wave equations for the circular polarization components in dimensionless (soliton) units:

∂Uj

∂Z
+

i
2

∂ 2Uj

∂X2 = −α̃Uj + iκU3− j +
2i
3

N 2(1+ iK)(|Uj|2 +2|U3− j|2)Uj. (11)

Here j = 1,2 pertains to right (1) and left (2) circular polarizations, respectively. The dimen-
sionless variables are X = x/w0,Z = z/LD, and Uj = u j(k0LDn2)1/2, where k0 = ω0/c. We have
also introduced the notations: LD = βw2

0 is a diffraction length, w0 being a typical transverse

beam size in the x-direction; β = (βx + βy)/2, n2 = 3Re{χ (3)
xxxx}/8nL is the nonlinear refractive

index, and α̃ = αLD/2 is a dimensionless linear loss coefficient.
The three key dimensionless parameters, defining the soliton dynamics, are the field-induced

birefringence coefficient

κ =
(βx −βy)LD

2
− 4

3
k0n2LDE2

ext , (12)
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a so-called soliton parameter, N , defined as

N 2 = LD/LNL = k2
0w0nLnNL p, (13)

and a dimensionless TPA strength K specified as

K =
βTPAnL

2k0n2
. (14)

In Eqs. (13) and (14), p is a beam power (per unit length), and the two nonlinear refractive
indices n2 and nNL are measured in different units and are related by n 2 = nNLε0cnL/2 [11].

3. Numerical simulations

(a) Eext = 2.38V/μm,θ = 90◦ (b) Eext = 2.675V/μm,θ = 0◦

(c) Eext = 2.52V/μm,θ = 70◦ (d) Eext = 2.527V/μm,θ = 30◦

Fig. 2. Evolution of the intensity profiles of the fundamental vector soliton, N = 1, for
different values of Eext and θ . The dimensionless TPA strength is K = 0.0025.

We numerically solved Eq. (11) using a standard split-step Fourier method, which is com-
monly applied to the analysis of beam propagation problems [13]. In particular, we modified
an open source code of SSPROP [14] by including the dc field-induced linear birefringence as
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(a) Eext = 2.38V/μm,θ = 90◦
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(b) Eext = 2.675V/μm,θ = 0◦
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(c) Eext = 2.52V/μm,θ = 70◦
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(d) Eext = 2.527V/μm,θ = 30◦

Fig. 3. Evolution of the powers of the fundamental vector soliton components, N = 1, for
different values of Eext and θ . The dimensionless TPA strength is K = 0.0025.

well as nonlinear loss terms. In our simulations, we have chosen silicon nanocrystals (Si-nc)
as our nonlinear material due to its high nonlinear refractive index, n NL = 5.18×10−15 m2/W,
and weak two-photon absorption, βTPA=0.2 m/GW, both given at λ0 = 813 nm [15]. Further,
as the size of Si nanocrystals is much smaller than the wavelength of light, a Si-nc rich mate-
rial usually has homogeneous optical properties and isotropic optical constants in the visible
spectral range [16]. The magnitudes of the refractive index and the modal birefringence con-
stant are influenced by many factors, such as Si content, the process of waveguide fabrication,
etc. [17]. In this work, we used the following values of the parameters: λ 0=813nm, n0=1.7,
δn = nTE − nTM= 0.0002. For these values, the dimensionless TPA parameter is K = 0.0025.
The input optical field had a hyperbolic secant profile (spatial soliton) with the beam waist
w0 = 3μm. The two orthogonally polarized components have zero phase difference (linear po-
larization), and the ratio of their amplitudes is specified by the angle θ that the soliton electric
field makes with the slow axis of the waveguide. The external electric field was varied in the
range from 0 V/μm to 10 V/μm. The length of the waveguide was 100L d , which is about 1.11
cm.
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(a) Eext = 0V/μm,θ = 70◦ (b) Eext = 1.5V/μm,θ = 70◦

Fig. 4. Evolution of the intensity profiles of the second-order, N = 2, vector soliton, K =
0.0025 (a) in the absence of birefringence,i.e., Δβ = 0 (b) with internal birefringence and
the external field present.

Whenever a single soliton-like beam, polarized along the y-axis (TM mode), is launched as
shown in Fig. 2(a), one can set the external electric field to a certain value, equal to 2.38V/μm
in our parameter regime, such that at the output almost all the power (96%) is switched to the
x-component (TE mode), as is illustrated in Fig. 2(a) and 3(a). The total input power is chosen
such that N = 1. Notice that since the power of the TM mode gradually decreases due to two-
photon absorption, slightly less than 96% of the incident power is actually transferred to the
TE mode. Similarly if a TE signal is initially launched as shown in Fig. 2(b), a TM polarized
output can be amplified by simply setting the magnitude of the control field to 2.675V/μm.
This situation is illustrated in Fig. 2(b) and 3(b). Thus our numerical simulations demonstrate
the possibility of designing a reconfigurable TE⇐⇒TM soliton mode converter.

If on the other hand, a vector soliton is launched as indicated in Fig. 2(c) and Fig. 2(d) such
that N = 1, but one of the soliton components carries much more power than the other, the
magnitude of the controlling electric field can be set to obtain either a weak signal amplification
or a power limiting of a desired soliton component to a certain value. The former possibility
is shown in Fig. 3(c), while the latter is illustrated in Fig. 3(d). It can be readily inferred by
analyzing Fig. 2(d) and 3(d) that despite the nonlinear losses, the power-carrying polarization
component loses only a negligible fraction of its initial power over the propagation distance of
about 100 diffraction lengths, whereas the other component suffers a dramatic power loss over
the same distance.

Finally, we consider a second-order soliton input, N = 2, where the TM component initially
carries much more power than the TE one. The two-photon absorption will cause the amplitude
and oscillation period of the second-order soliton decrease and increase, respectively, as it prop-
agates down the waveguide until the soliton splits into a pair of fundamental solitons with equal
amplitudes and different propagation angles. We display such an evolution scenario in Fig. 4(a)
for the second-order soliton propagating without energy exchange, i.e., assuming no external
control field and zero internal birefringence. We note that in the absence of the energy exchange
between the higher-order vector soliton components, the TPA-induced soliton splitting in Kerr-
like nonlinear media is qualitatively similar to the behavior of their scalar counterparts, which
was studied experimentally in [18]. A comprehensive theoretical analysis of the TPA-induced
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splitting of higher-order scalar solitons can be found in [19]. Such a splitting was characterized
as a bifurcation-like phenomenon caused by non-adiabatic energy absorption at the point of the
highest soliton field intensity, i.e., at the position of the strong soliton overlap.

The higher-order N = 2, soliton evolution scenario qualitatively changes in presence of
the birefringence-induced energy transfer between the polarization components of the vector
soliton. In this case, as is evidenced in Fig. 4(b), there is power transfer, accompanied by slow
(adiabatic) energy loss due to TPA, with the weaker polarization component transferring its
power to the stronger one as well as to the medium. However, no soliton splitting occurs over
the entire length of the waveguide, provided the magnitude of the electric field is set to a certain
value. We conjecture that the suppression of the higher-order vector soliton splitting is a result
of a subtle interplay between the periodic power exchange between the soliton components,
whose period is controlled by the external dc field, and the action of the TPA. Indeed, as the peak
intensity of the stronger soliton component is drastically reduced due to intensity-dependent
two-photon absorption, the other component will transfer enough power to it to guarantee its
structural integrity. Eventually, most of the power will reside in the slow-axis component which
will then slowly (adiabatically) decay as a result of the TPA.

It should be noted that although we chose a specific input wavelength of 813 nm, all our
numerical results remain qualitatively the same for any input wavelength as long as the nonlin-
earity is strong enough and the effect of TPA can not be neglected.

4. Conclusion

We have shown that an external electric field can be used to control, via the quadratic electro-
optic effect, the power transfer between the components of a spatial vector soliton propagating
in a planar waveguide filled with an isotropic Kerr-like nonlinear medium, i.e. Si-nc-based
material. In particular, by adjusting both the external field applied along the fast axis of the
waveguide, and the input polarization state of the soliton, one can switch the fast and slow axes
of the waveguide and attain the maximum power transfer from the fast soliton component to the
slow one. Thus, we have demonstrated that the application of the electric field can significantly
affect the polarization dynamics of the vector soliton. Our simulation results can find diverse
applications to such all-optical operations as the fanout implementation with a switching de-
vice [6], all-optical switching [1], power limiting [20], and optical routing, to mention just a few
possibilities. It should be stressed here that we are reporting the first proof-of-principles results.
Further research is needed to make the proposed functionalities attractive to the design of fu-
ture electronically controllable all-optical switching/reconfigurable and/or multistable/storing
devices.
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