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Abstract: The nonlinear polarization dynamics of ultrashort optical
pulses propagating in a low birefringent silicon waveguide is theocratically
and numerically studied, with a static electric field applied across the
waveguide. It is shown that the pulse shape and polarization evolution
can be efficiently controlled by adjusting the magnitude of the applied dc
field. It is also demonstrated that the polarization instability regime can be
achieved in such waveguides – despite the presence of strong linear losses
– by appropriately engineering the spatial distribution of the control field
along the waveguide. The simulations indicate that short silicon waveguides
can serve as a viable platform for developing re-configurable all-optical
and/or optically assisted electro-optic devices in the spectral range spanning
from near- to mid-infrared.
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1. Introduction

Silicon photonics has been widely viewed as a promising candidate for integration with mi-
croelectronics owing to silicon’s high refractive index that enables one to scale the dimensions
of silicon-based devices down to the size compatible with integrated-circuit processing [1–3].
As a result of the large third-order optical nonlinearity of silicon and tight optical confinement,
silicon waveguides have been conjectured to provide a versatile platform for realization of a
multitude of nonlinear optical functionalities [4, 5]. One of the distinguishing features of sili-
con as a semiconductor material – at least in certain spectral regions – is its pronounced linear
and two-photon absorption (TPA), accompanied by the carrier generation. Generally, linear
losses and TPA impose severe limitations on the silicon functionality for all-optical communi-
cations. Yet, several modalities have recently been proposed that essentially rely on TPA [6, 7].
To date, a number of fundamental advances have also been made in silicon photonics, including
wavelength switching and generation, optical amplification and lasing, temporal soliton prop-
agation and suprercontinuum generation, and dc field-induced suppression of the split-up of
higher-order spatial vector solitons [8–17], to mention but a few examples. However, relatively
little attention has so far been paid to the evolution of ultrashort pulse polarization inside silicon
waveguides, and, to the best of our knowledge, the issue of the pulse polarization control has
not been explored yet.

In this work, we describe theoretically and numerically the nonlinear polarization evolution
of an ultrashort pulse, propagating in a silicon waveguide, subjected to the action of an ex-
ternal control electric field, which induces linear birefringence via the quadratic electro-optical
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effect [18]. The polarization state of the pulse, transmitted through such a waveguide, is numeri-
cally simulated in the spectral interval extending from near- to mid-infrared. We have found that
the transmitted pulse polarization can be controlled by adjusting the magnitude of the dc field
as well as the input pulse power. Although the nonlinear polarization rotation and its applica-
tions are well known in the fiber optics context [19, 20], several new factors must be considered
when the silicon waveguide is utilized. First of all, like any other semiconductor material, sili-
con has high linear loss and – in some spectral regions – pronounced nonlinear absorption that
is also responsible for the free carrier generation. Second, the interplay of nonlinear absorption
and controlled linear birefringence has lately been shown to lead to qualitatively new phenom-
ena such as suppression of higher-order vector soliton breakup in silicon nanocrystal waveg-
uides [17]. Further, silicon is known to have a sizable anisotropy of the nonlinear refraction [4].
At the same time, the anisotropy of silicon TPA is yet an open issue because of a discrepancy
in reported optical and electrical measurements to date [21, 22]: The former appears to indicate
that TPA is essentially isotropic, while the latter points in the other direction.

In this work, we will assume isotropic TPA since several aspects of the electrical measure-
ments of Ref. [22] are yet to be clarified [4]. The pulse polarization dynamics is controlled by a
static electric field, which is, in general, spatially inhomogeneous. We have discovered that de-
spite very large linear losses, the nonlinear polarization instability regime – similar to the one
encountered in lossless fibers – can be attained in the mid-infrared spectral region of silicon
provided a special spatial profile of the controlled field is engineered.

This paper is organized as follows. In section (2), a theoretical model for the propagation of
ultrashort light pulses of arbitrary polarization in low birefringent silicon waveguides subject
to a controlling dc electric field is presented. In section (3), the results of numerical simulations
of pulse shape and polarization control are presented and discussed. Section (4) summarizes
concluding remarks.

2. Theory

Consider an optical pulse propagating in a planar waveguide filled with silicon. The pulse prop-
agation is mediated by an electric field 1

2Eext applied along the x-axis. The electric field of the
pulse can then be represented as

E =
1
2
[ax(Exe

−iωt +Eext)+ayEye
−iωt ]+ c. c. (1)

Here the unit vectors ax and ay are assumed to be directed along [100] and [010] silicon crystal
axes, respectively. The third-order dielectric susceptibility tensor of the silicon can then be
represented as [4]

χ(3)
i jkl = χ(3)

xxxx[
ρ
3

(δi jδkl +δikδ jl +δilδ jk)+(1−ρ)δi jkl ], (2)

where i, j,k, l take on values x and y, and ρ = 3χ(3)
xxyy/χ(3)

xxx is the nonlinear anisotropy coeffi-
cient; δi jkl is the Kronecker delta. The nonlinear polarization field, generated by any Kerr-type
nonlinear medium, can be written as

PNL = ε0χ(3)...EEE. (3)

It follows from (1)– (3) that the component of the polarization tensor oscillating at the carrier
frequency ω takes the form

PNL =
1
2
(axPx +ayPy)e−iωt + c. c., (4)
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where

Px =
3ε0

4
χ(3)

xxxx

[(
|Ex|2 +

2ρ
3
|Ey|2

)
Ex +

ρ
3

(
E ∗

x Ey +12E2
extEx

)]
, (5)

and

Py =
3ε0

4
χ(3)

xxxx

[(
|Ey|2 +

2ρ
3
|Ex|2

)
Ey +

ρ
3

(
E ∗

y Ex +4E2
extEy

)]
. (6)

Here, we have assumed that ω lies well below any resonant frequency of the medium. It then
follows that the third-order susceptibility is virtually independent of frequency in the vicinity of
ω , so that χ(3)(−ω,ω,ω,−ω) = χ(3)(−ω,ω,0,0) , and, thus, one can use the same constant
susceptibility to describe optical and electro-optical Kerr effects.

The nonlinear wave equation, governing beam propagation, can be cast into form

∇2E− 1
ε0c2

∂ 2D
∂ t2 = μ0

∂ 2P f

∂ t2 + μ0
∂ 2PNL

∂ t2 , (7)

where
P f = ε0χ f E, (8)

is the free carrier polarization field and D is the electric displacement. The free carrier induced
linear susceptibility χ f is given by the expression

χ f = 2n0[n f (N)+ icα f (N)/(2ω)], (9)

where no is the material refractive index, c is the speed of light in free space, nf (N) and α f (N)
are the free-carrier index change (FCI) and the free-carrier absorption (FCA) coefficients, re-
spectively, and N being the number of free carriers.

In the usual slow-varying envelope approximation, the solution to (7) in the waveguide ge-
ometry can be sought in the form

E j(r, t) = Fj(x,y)u j(z, t)eiβ0 jz, (10)

where Fj(x,y) is the spatial mode profile of the single-mode waveguide normalized such that∫
∂x∂y|Fj(x,y)|2 = 1; u j(z, t) are the slowly varying field amplitudes, and β0 j are the propaga-

tion constants of the components j = x,y. It follows that the wave equations for the slow-varying
amplitudes can be represented as

∂ux

∂ z
+

iβ2

2
∂ 2ux

∂τ2 = −
(α

2
− iσ

)
ux +4iκux + iγ(|ux|2 +

2ρ
3
|uy|2)ux +

iγρ
3

u∗xu2
ye−2iΔβ z, (11)

∂uy

∂ z
+

iβ2

2
∂ 2uy

∂τ2 = −
(α

2
− iσ

)
uy +

4iκ
3

uy + iγ(|uy|2 +
2ρ
3
|ux|2)uy +

iγρ
3

u∗yu2
xe2iΔβ z. (12)

Here α is the linear loss coefficient; Δβ = β0x −β0y = ωΔn/c and κ = 1
2 ε0ωn0n2E2

ext are the
intrinsic and dc-field induced linear birefringence parameters,respectively, γ = (n2ω/cAe f f +
iβTPA/2Ae f f ), and n2 and βTPA being the nonlinear refractive index and the nonlinear
absorption coefficient, respectively. Further, β2 is the group velocity dispersion; Ae f f =
(
∫

∂x∂y|F(x,y)|4)−1 is the effective mode confinement area, β1x ≈ β1y = β1 is the inverse
group velocity, and τ = t − β1z is retarded time. In deriving Eqs. (11) and (12), we assumed
low birefringence of a silicon waveguide such that the parameter characterizing the free carrier
contribution to linear refraction and absorption can be approximated by

σ � n0

n
[
ω
c

n f +
i
2

α f ], (13)
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where n is the mode refractive index. Here the FCI and FCA are given by the following empir-
ical expressions [4]

n f = −5.3×10−29(ωr/ω)2N, α f = 1.45×10−21(ωr/ω)2N. (14)

Here λr = 2πc/ωr = 1550nm.
Hereafter it will be more convenient to work in the circular polarization basis, defined by the

transformation

u1 =
uxei Δβ

2 z + iuye−i Δβ
2 z

√
2

e−2iζ ; u2 =
uxei Δβ

2 z − iuye−i Δβ
2 z

√
2

e−2iζ , (15)

where ζ = 4
6 ε0ωn0n2

∫
E2

ext(z)dz. In the low birefringence limit, the wave equations in the cir-
cular polarization basis will take the form

∂us

∂ z
+

iβ2

2
∂ 2us

∂τ2 =−
(α

2
− iσ

)
us+iκe f f u3−s+

i(3+ρ)γ
6

(|us|2+2|u3−s|2)us+
i(1−ρ)γ

2
u2

3−su
∗
s ,

(16)
where s = 1,2 pertains to right 1 and left 2 circular polarizations, and the effective birefringence
coefficient is defined as

κe f f (z) =
Δβ
2

+
1
2

ε0ωn0n2E2
ext(z). (17)

We model carrier generation by a phenomenological kinetic equation whose derivation relies on
the following set of assumptions. First, we consider optical pulses much shorter than the char-
acteristic carrier relaxation time, which implies virtually instantaneous response of the carriers
to the input light intensity. Second, we assume a low repetition rate of the optical pulses such
that each pulse interacts only with the carriers it has generated. Under these assumptions, the
carrier density kinetic equation – which is a straightforward generalization of the one reviewed
for linearly polarized pulses in Ref. [4] – can be shown to take the form

∂N
∂ t

=
βTPA(ω)
3A2

e f f hω

[
3+ρ

4
(p1 + p2)2 +

3+ρ +3(1−ρ)cos2Δφ
2

p1 p2

]
, (18)

where ps and φs are the amplitude and phase, respectively, of the complex field us; Δφ = φ2−φ1.
Equations (13) – (18) govern the polarization dynamics of light pulses in silicon waveguides

in the low birefringence approximation. In general, the light polarization evolution depends on
the intricate interplay of a number of factors, including linear loss, TPA, nonlinear anisotropy,
and externally controlled birefringence; a comprehensive picture can only be obtained via nu-
merical simulations. Prior to presenting a detailed numerical analysis, however, we consider a
quasi-CW input pulse and ignore the nonlinear anisotropy by assuming ρ = 1. Assume also
that the input pulse carrier frequency lies in the spectral region where TPA is negligible. In
this somewhat idealized case, the polarization dynamics is determined by a relative strength of
linear losses and birefringence on the one hand, and the nonlinearity on the other. It follows
that equations (16) for the slow-varying field amplitudes can be simplified as

∂us

∂ z
= −α

2
us + iκe f f (z)u3−s +

2iγ
3

(|us|2 +2|u3−s|2)us. (19)

Further consider a special spatial profile for the electrostatic field such that

κe f f (z) = κ0e−αz, (20)
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where κ0 is constant. The corresponding dc field is given by the expression

Eext(z) =

√
2

ε0ωn0n2

(
κ0e−αz − �β

2

)
. (21)

The controlling field in Eq. (21) can be realized in practice for any positive κ0, provided
Δβ < 0. However, if the direction of the field coincides with the slow axis of the waveguide
such that Δβ > 0, one can realize the field distribution in Eq. (21) only if the field at the input
to the waveguide is strong enough: κ0 ≥ Δβ

2 eαL. In the following, we assume that Δβ > 0 and

κ0 = Δβ
2 eαL, and we rewrite Eq. (21) as

Eext(z) =

√
Δβ

ε0ωn0n2

[
eα(L−z) −1

]
, (22)

where L is the waveguide length.
With the exponential profile of the linear birefringence, it can be concluded by inspection

that upon the scaling transformation

u(z) = e−
α
2 z ū(Z) Z =

1− e−αz

α
, (23)

the nonlinear wave equations (19) can be reduced to

∂ ūs

∂Z
= iκ0ū3−s +

2iγ
3

(|ūs|2 +2|ū3−s|2)ūs. (24)

Equations (24) are formally equivalent to those governing the self-induced polarization rota-
tion – and the polarization instability, resulting from a subtle balance between linear birefrin-
gence and self- as well as cross-phase modulation – in lossless birefringent optical fibers in a
quasi-CW limit [19, 23]. Consequently, similar phenomena should take place in lossy silicon
waveguides, provided the power of each polarization component of the pulse and the effective
interaction length are scaled according to Eq. (23). It follows from Eqs. (20) and (23) that by
choosing the electrostatic field profile decreasing at the rate determined by linear losses, one can
accommodate the latter at the expense of shortening the effective interaction length. It should
be stressed here that although we have so far ignored TPA and nonlinear anisotropy, the choice
of the spatial profile of the controlling field given by Eq. (22), will prove to be crucial to realize
instable polarization dynamics in the mid-infrared spectral region under general conditions.

3. Simulations and results

In our numerical simulations, we adopt a quasi-symmetric silicon-on-insulator (SOI) waveg-
uide designed and studied in Ref. [24]. The effective cross-sectional area is taken to be
Ae f f = 0.685μm2, and the group velocity dispersion (GVD) coefficients at 1550nm and 2300nm
are estimated to be β2 � 0 and β2 =−1.3ps2/m, respectively. We point out here that the partic-
ular SOI design of Ref. [24] is chosen primarily for its low linear birefringence which enables
the nonlinear polarization rotation to be realized at relatively small pulse intensities. The choice
of the waveguide length and the magnitude of the linear birefringence coefficient is dictated by
rather subtle considerations. On the one hand, the SOI waveguide must be long enough for the
nonlinearity to significantly affect the polarization dynamics. On the other hand, the waveg-
uide has to be sufficiently short to ensure that linear and nonlinear losses do not significantly
attenuate the pulse intensity. Finally, the maximum operating value of the control field – which
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determines effective linear birefringence – is limited by the electrical damage threshold of the
material, equal to 30 V/μm for silicon [25]. We thus chose a suitable value of the linear bire-
fringence coefficient for a maximum acceptable magnitude of the control field and then per-
formed preliminary numerical simulations to find out the range of optimal waveguide lengths
that would meet the rest of our requirements.

To characterize the field polarization state, we introduce the azimuth θ

θ =
1
2
[φ1 −φ2]; (25)

and the ellipticity parameter, defined as

ep =
√

p1 −√
p2√

p1 +
√

p2
. (26)

In the following simulations, we assume that a polarizer is placed at the waveguide exit. The
polarizer is oriented such that if the waveguide length equals to the beat length due to linear
birefringence, the lower input power is blocked. It can then be shown that the transmission
coefficient, which is calculated generalizing the procedure developed in the fiber optical context
[23], takes the form

T =

√
p2

1(L)+ p2
2(L)

p2
1(0)+ p2

2(0)

⎧⎨
⎩

1
2
−

√
p1(L)
p2(L)

1+ p1(L)
p2(L)

cos[φ1(0)−φ2(0)−φ1(L)+φ2(L)]

⎫⎬
⎭ , (27)

ps and φs are the power and phase, respectively, of the sth field component, s = 1,2.

3.1. Mid-infrared spectral region

High nonlinear figure of merit (NFOM) of silicon material has been experimentally reported
in the mid-infrared spectral region, i.e. for λ = 2200−−2400 nm, where n2 ≈ 1.5× 10−18

m2/W, and βTPA ≈ 0 [26]. Due to the large optical nonlinearity and absence of TPA in silicon
in this spectral region, we expect favorable conditions for the polarization instability to occur
there, resulting in nontrivial polarization dynamics. Thus, we study numerically the polarization
evolution of a 70 fs wide Gaussian pulse in the mid-infrared spectral range.

In Fig. (1) we display the transmission coefficient of the Gaussian pulse peak as the latter
– having traversed a 6 mm long silicon waveguide – passes through the polarizer described in
Eq. (27).

In these simulations, the strength of linear birefringence is determined by the value of the
linear refractive index mismatch, �n = 2× 10−5. The input azimuth of the pulse is equal to
π/4, and the pulse input ellipticity is zero. Further, the linear loss coefficient is such that α =
57.5m−1, and the nonlinear anisotropy parameter of silicon is given by ρ = 1.27. The red line
represents the transmission coefficient in the case of a mediated dc electric field equal to 25
V/μm, while the green line represents that in the absence of control field, Eext

2 = 0. The specifics
of the control field spatial distribution along the waveguide are found to have no particular
importance in this case. The degree of control over the pulse polarization in silicon waveguides
– achieved despite linear losses by adjusting the electrostatic field – is manifest in Fig. (1) if
one contrasts drastically different behaviors of the transmission coefficient as functions of the
pulse power with and without the applied field.

To demonstrate the polarization control across the pulse temporal profile, we exhibit in
Figs. (2) and (3) the shapes of the output Gaussian pulses as functions of the input pulse peak
power for input azimuth θ = 75o.
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Fig. 1. Transmission coefficient as a function of the input peak power of a 70 fs long
Gaussian pulse. The other parameters are: ep0 = 0, θ0 = 45o, λ = 2300nm, L = 6mm,
α = 57.5m−1, ρ = 1.27, Eext1
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Fig. 2. Normalized transmitted pulse as a function of the input peak power. The input is
a Gaussian pulse of the width T0 = 70 fs. The other parameters are: ep0 = 0, θ0 = 750,
λ = 2300nm, α = 57.5m−1, L = 6mm. The applied control field is Eext

2 = 0 V/μm.
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Fig. 3. Normalized transmitted pulse as a function of the input peak power. The input is
a Gaussian pulse of the width T0 = 70 fs. The other parameters are: ep0 = 0, θ0 = 750,
λ = 2300nm, α = 57.5m−1, L = 6mm. The applied control field is Eext

2 = 25 V/μm.

In Fig. (2), we depicted the results with no applied electric field, while the results in Fig. (3)
correspond to the pulse propagation in presence of the homogeneous dc field, Eext

2 = 25 V/μm,
applied across the waveguide. It can be inferred from these figures that the pulse shape can also
be readily controlled by influencing the pulse polarization state with the electrostatic field. We
note that in this case the characteristic dispersion length is LD = 3.7mm, which is shorter than
the physical length of the waveguide; thus dispersion strongly influences the pulse reshaping
and polarization dynamics.

In the same power range, the polarization instability is found to be taken place in sufficiently
long waveguides. In Figs. (4)and (5)the simulation results for the pulse transmission through a
2− cm long silicon waveguide, followed by a polarizer oriented as before, are shown.
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Fig. 4. Transmission coefficient as a function of the input peak power. The input is a Gaus-
sian pulse of the width T0 = 70 fs. The other parameters are: ep0 = 0, λ = 2300nm,
α = 57.5m−1 and L = 2cm. The azimuth is chosen within the polarization instability
regime. A properly designed spatial profile of the control field – given by Eq. (22) – is
assumed, with the field magnitude at the entrance taken to be 25 V/μm.

Same waveguide and input pulse parameters as those in Fig. (1) are considered, except the
azimuth is equal to π/2. In Fig. (5) a constant dc electric field, equal to Eext

2 = 25v/μm, is
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Fig. 5. Transmission coefficient as a function of the input peak power. The input is a Gaus-
sian pulse of the width T0 = 70 fs. The other parameters are: ep0 = 0, λ = 2300nm,
α = 57.5m−1 and L = 2cm. The azimuth is chosen within the polarization instability
regime. Constant electric field is assumed,i.e. Eext

2 = 25 V/μm.

applied, while in Fig. (4) a spatially distributed field according to Eq. (22) control field is
assumed with the maximum field at the waveguide input be equal to 25 V/μm. It can be seen
in Figs. (4) and (5) that provided the waveguide is long enough, the polarization instability can
occur – a small change of the input azimuth causes a considerable change in the transmission
coefficient – regardless of the actual magnitude of the applied field. However, on comparing
the cases of constant and exponentially decaying control fields, several instructive conclusions
can be drawn. First of all, the instability is less pronounced – there is a lower sensitivity – in
the former case than it is in the latter. Second, the pass bands occur at higher optical intensities
in the former case than they do in the latter. Third and most important, the transmission bands
overlap in the former case, and their shapes are somewhat irregular. In a sharp contrast, the
polarization instability for the case of an exponentially distributed control field has the same
regular qualitative features as its fiber optics counterpart [20]. The latter circumstance hints
at possible applications of the appropriately electronically tailored polarization instability –
with non-overlapping transmission bands, ideal for all-optical discrimination – to silicon-based
ultra-high resolution devices [27]. In this parameter regime, the crucial role of the exponential
control field distribution is attributed to a large waveguide length, which translates to high
linear losses. As is shown in Section 2, the only way to accommodate such losses is for the
field-induced linear birefringence to follow their profile which reduces the effective interaction
length, but otherwise leaves the qualitative picture of the polarization instability unaffected.

3.2. Near-infrared spectral region

In this section, we study the pulse polarization dynamics at the telecommunication spectral
wavelength, 1.55μm. The silicon material, at 1.55μm, has pronounced two photon absorption
(TPA) such that nonlinear losses and the associated generated free carrier evolution must be
taken into account [28]. On the other hand, on the application of the dc electrical field, the
influence of the applied electrostatic field on the nonlinear absorption is known to be negligi-
ble [29].

In Fig. (6) we display the simulation results for the transmission coefficient of a Gaussian
input pulse of the width T0 = 70 fs as it passes through a polarizer at the exit of a 6−mm long
silicon waveguide. The other pulse and waveguide parameters are the same as those in Fig. (1).

The blue line represents the transmission coefficient in the case when all realistic effects are
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Fig. 6. Transmission coefficient as a function of the input peak power. The input is a Gaus-
sian pulse of the width T0 = 70 fs. The other parameters are: ep0 = 0, θ0 = 90o, λ = 1550nm

and L = 6mm. Here Eext1
2 = 25 V/μm and Eext1

2 = 0 V/μm.

taken in to account, while the solid and circled red lines correspond to the cases of zero TPA
and no generated free carries, respectively, which are presented for comparison. The constant
electric field strength is taken to be 25 V/μm. As it can be seen from the Figure, the TPA
affects the behavior of the transmission coefficient, much more significantly than does the free
carrier generation. This is because, in this case, the nonlinear polarization rotation effects occur
at relatively low power values such that the corresponding density of generated free carries is
small. To illustrate the influence of the control field, we also present by the green line in Fig. (6)
the transmission coefficient behavior in the absence of the control field.

Finally, we have carried out numerical simulations seeking polarization instability in this
spectral region, only to have found out that the pass band was highly attenuated for the onset
of the instability to be detectable. This is because the higher powers of the input pulses and/or
longer waveguides are required to observe the polarization instability. Unfortunately, more in-
tense pulses are greatly attenuated due to TPA which appears to extinguish any hope to attain
the polarization instability regime.

4. Conclusions

We studied numerically the nonlinear polarization dynamics of ultrashort pulses in silicon
waveguides in presence of a static controlling electric field. We have shown that polarization
properties of such pulses can be easily tailored by simply adjusting the magnitude of the control
field which would affect the strength of field-induced – via the quadratic electro-optic effect –
linear birefringence of silicon. We have also found that despite the presence of strong lin-
ear losses, rather stringent requirements for realization of the polarization instability in silicon
waveguides in the mid-infrared spectral region can be met, provided the special spatial profile –
given by Eq. (22) – of the control field is engineered. Our simulations indicate that short silicon
waveguides can serve as a viable platform for developing re-configurable all-optical and/or op-
tically assisted electro-optical devices in the spectral range spanning from near to mid-infrared.
Electrically re-configurable optical logic, pulse reshaping, switching and power dependant all-
optical operations are among the silicon-based functionalities that appear to be promising.
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