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Light beams with minimum phase–space product
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We derive a reciprocity inequality involving the product of the effective size of a statistically stationary, planar,
secondary source of any state of coherence and of the angular spread of the far-zone intensity generated by the
source. We show that of all possible such sources, the fully spatially coherent lowest-order Hermite–Gaussian
laser mode has the smallest possible reciprocity product.  2000 Optical Society of America
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Optical reciprocity inequalities are an important sub-
ject in the context of diffraction of spatially coherent
light. An inequality of this type may be formulated
as follows: Consider a collimated, spatially coherent
light wave of wavelength l, incident on an aperture
of area A in a plane opaque screen. The illuminated
aperture may then be regarded as a secondary source.
According to a well-known result of Fraunhofer diffrac-
tion theory,1 the area A of the aperture and the solid
angle V, into which most of the light from the sec-
ondary source propagates, satisfy the reciprocity
inequality

VA $ l2. (1)

In general, however, there are not many light sources
that are fully spatially coherent; most sources are only
partially coherent. Studying the properties of par-
tially coherent sources and those of the fields that they
generate has attracted growing interest. In particu-
lar, it has been shown that some partially coherent
sources may generate the same far-zone intensity dis-
tribution as is produced by a single-mode laser.2 In
this connection, it is appropriate to formulate an op-
tical reciprocity inequality for sources of any state of
coherence and the fields that they generate. Some pre-
liminary results concerning this subject were reported
in Ref. 3.

In this Letter, we formulate a reciprocity inequality
for the phase–space product of the rms radius of a
statistically stationary, planar, secondary source of
any state of coherence and of the rms angular spread
of the radiant intensity distribution that the source
generates. We then show, with the help of second-
order coherence theory in the space-frequency domain
(Ref. 4; see also Sect. 4.7.1 of Ref. 5), that the phase–
space product attains minimum for the fully spatially
coherent lowest-order Hermit–Gaussian mode, such as
is generated by some well-stabilized lasers.

We begin by recalling that the cross-spectral density
W �r,r0,v� of a partially coherent, planar source can
be represented as a Mercer-type series of spatially
completely coherent modes ff �r,v� at given frequency
v, by means of the formula

W �r,r0,v� �
X
f

lff
�
f �r,v�ff �r0,v� . (2)
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Here r and r0 are two-dimensional vectors specifying
points in the source plane; the subscript f stands for
a set of integers labeling the modes, and lf is the
eigenvalue corresponding to the mode ff . The modes
can be chosen to form an orthonormal set. Each mode
is a solution of the integral equation

Z
d2rW �r,r0,v�ff �r� � lfff �r0� , (3)

where the eigenvalues lf are necessarily nonnegative,

lf $ 0 . (4)

The effective rms radius of the source may be defined
as the square root of the expression

� r2� �

R
d2rr2I �r�R
d2rI�r�

, (5)

where I �r� � W �r,r,v� is the intensity of the
source at the point r at frequency v. It follows from
Eqs. (2)and (5) that

� r2� �

P
f lf

R
d2rr2jff �r�j2P

f lf

. (6)

Similarly, we define the rms angular spread of the
radiant intensity J�s�� (Sect. 5.2.1 of Ref. 5) of the
field generated by the source as the square root of
the expression

�s2�� �

R
d2s�s2�J�ks�,v�R
d2s�J�ks�,v�

. (7)

Here k � v�c and s� is a two-dimensional vector
representing the projection onto the source plane of
a unit three-dimensional vector ŝ, pointing from the
source to the far zone (see Fig. 1). It should be noted
that js�j � sin u, where u is the angle between the
‘‘propagation direction’’ and the normal to the source
plane. If the source generates a paraxial beam, then
js�j � u. The radiant intensity may be expressed in
terms of the cross-spectral density of the source by the
formula (Sect. 5.2.1 of Ref. 5)

J�ks�,v� �
Z d2r

2p

Z d2r0

2p
W �r,r0,v�

3 exp�2iks� ? �r 2 r0�� . (8)
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Fig. 1. Geometry of a partially coherent, statistically
stationary, planar, secondary source. P is a point in the
far zone of the source occupying a portion of the plane z � 0.
OP � rŝ, �ŝ2 � 1�. u denotes the angle which the line OP
makes with the z axis.

On substituting for W �r,r 0,v� from Eq. (2) into Eq. (8)
and using the resulting expression in Eq. (7), we obtain
for the square of the rms angular spread of the radiant
intensity the formula

�s2�� �

P
f lf

R
d2�ks��s2�jf̃f �ks��j2P

f lf

, (9)

where f̃f �ks�� is the Fourier transform of the mode
function ff �r�, defined as

f̃f�ks�� �
Z d2r

2p
ff �r�exp�2iks�r� . (10)

It can be seen from Eqs. (6) and (9) that the effec-
tive rms radius of the source and the rms angular
spread of the radiant intensity of the field generated
by the source are just weighted superpositions of the
average effective size and the effective angular spread
of each mode. The mode functions ff �r� and their
Fourier transforms f̃f�ks�� are formally analogous to
the quantum-mechanical wave functions in coordinate
and in momentum representations, respectively. This
fact allows us to utilize the approach developed in the
context of quantum mechanics6 to derive the reciprocity
relation for the phase–space product of conjugate vari-
ables. For this purpose, we consider the nonnegative
quantity

L�a� �

P
f lf

R
d2r�g�

f ,gf �P
f lf

$ 0 , (11)

where the vector gf is defined as

gf � rff �r� 1 a=ff �r� , (12)

with a being an arbitrary real constant, independent
of the subscript f . On substituting from Eq. (12) into
Eq. (11), we obtain for L�a� the expression
L�a� �

P
f lf

R
d2r� r2jff j

2 1 ar ? =jff j
2P

f lf

1

P
f lf

R
d2ra2=ff=f

�
f �P

f lf
$ 0 . (13)

Next, we use the properties of Fourier transforms to
rewrite the last term inside the sum on the right-hand
side of Eq. (13) in the form

Z
d2r=ff=f

�
f �

Z
d2�ks��k2s2�jf̃f �ks��j2 , (14)

where contributions which give rise to evanescent
waves �js�j . 1� have been omitted. On integrating by
parts the second term on the right-hand side of Eq. (13)
and on substituting Eq. (14) into Eq. (13), we obtain
the inequality

L�a� � � r2� 2 2a 1 a2k2�s2�� $ 0 , (15)

where we have used the definitions of the rms radius
(6) of the source and that of the rms angular spread (9).
In order for the inequality (15) to hold for any value
of a, the square of the rms radius of the source and
the square of the rms angular spread of the radiant
intensity must satisfy the inequality

� r2� �s2�� $

µ
l

2p

∂2
, (16)

where l � 2p�k is the wavelength. If the source gen-
erates a paraxial beam, then, since js�j � u, Eq. (16)
becomes

� r2� �u2� $

µ
l

2p

∂2
. (17)

The inequality (17) is similar to the reciprocity inequal-
ity (1) for a phase–space product of the fields generated
by coherent sources.

We will now determine the class of sources for
which the phase–space product attains minimum. We
observe that since the quantity L�a� in Eq. (11) is
nonnegative, its minimum is equal to zero, which
in turn is achieved if and only if gf � 0 for all f .
According to Eq. (12) this condition is equivalent to the
set of equations

rff �r� 1 a=ff �r� � 0 (18)

for ff�r�. The normalized solutions of these equa-
tions are

ff �r� �
1

2ps2 exp�2r2�2s2� , (19)

where s � a1/2 is a rms radius, which is the same
for each mode. Finally, on substituting Eq. (19)
into Eq. (2), we obtain for the cross-spectral density
W0�r,r0,v� of the source which has minimum phase–
space product, the expression

W0�r,r0,v� � A exp�2r2�2s2�exp�2r02�2s2� , (20)

where A �
P

f lf�2ps2. It follows at once from
Eq. (20) that (i) the source for which the phase–space
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product attains its minimum is fully spatially coherent7

and (ii) its cross-spectral density is just a product of
the lowest-order Hermite–Gaussian functions, which
corresponds to the fully spatially coherent Gaussian
Shell-model source (Sect. 5.4.2 of Ref. 5). We have
thus established the following theorem:

Among all statistically stationary, planar, secondary
sources, the one that gives rise to the minimum value of
the phase–space product,

P 	 � r2� �s2�� , (21)

where � r2� is the square of the rms radius of the
source and �s2�� � �sin2 u� is the square of the rms
angular spread of the radiant intensity produced by
the source, is the source that generates the lowest-order
Hermite–Gaussian field. Such field distribution is
produced, for instance, by some well-stabilized single-
mode lasers.

To summarize, we have derived an inequality that
is satisfied by the phase–space product of the rms
radius of a statistically stationary, planar, secondary
source of any state of coherence and of the rms angu-
lar spread of the radiant intensity distribution that
this source generates. We have also shown that the
phase–space product attains minimum for the fully
spatially coherent lowest-order Hermite–Gaussian
distribution.

The theorem that we just established has an inter-
esting implication for Gaussian Shell-model sources of
any state of coherence. On one hand, it is known2 that
one can trade off the rms radius of the Gaussian Shell-
model source for the rms angular spread of the ra-
diant intensity distribution generated by the source.
On the other hand, it follows from our theorem that
the requirement for the phase–space product to attain
its minimum makes the fully coherent Gaussian Shell-
model source genuinely unique.
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is equal to unity.


