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Spatial optical similaritons in conservative nonintegrable systems
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We demonstrate analytically and numerically that stable spatial similaritons can be supported by homogeneous
conservative optical media with quintic nonlinearities. Unlike previously discussed spatial similaritons, the novel
waves may exist in a broad parameter regime. We also present a generic model for a quintic nonlinearity by
considering a centrosymmetric nonlinear medium doped with resonant impurities in the limit of a large light

carrier frequency detuning from the impurity resonance.
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Introduction. Similarity and self-similarity have been re-
curring themes in various branches of nonlinear physics,
including nuclear physics, gas dynamics, fracture and fluid
mechanics, and hydrodynamical turbulence, to mention but a
few areas [1]. Lately, self-similarity has gained prominence
in nonlinear optics, triggered by recent theoretical discovery
[2] and experimental realization [3] of stable self-similar
pulses, optical similaritons, in nonlinear fiber amplifiers in
the normal dispersion regime. These advances generated a
flurry of activity which is reviewed in Ref. [4]. Unlike solitons
which are static (equilibrium) structures, formed as a result of
the balance between diffraction or dispersion and nonlinearity,
the similaritons are quintessentially nonequilibrium waves—
existing in either conservative or dissipative and gain media—
that maintain their structural stability (intensity profiles).

To date, research on self-similarity in optics has primarily
focused on asymptotic temporal similaritons that form over
long propagation distances in optical fiber amplifiers [4],
although asymptotic spatial and spatio-temporal similaritons
have also been studied [5,6]. At the same time, soliton-like
temporal [7-9] as well as spatial (1 + 1)D [10] similaritons
have been shown to exist in the media with Kerr-type
nonlinearities—in the fiber or planar waveguide geometries—
with gain or loss and, in general, in the presence of spatial
inhomogeneities. The similaritons of a soliton-like nature
can form at any propagation distances. Moreover, provided
a certain compatibility condition among the parameters of
the media is satisfied, they are directly related to the well-
known (1 + 1)D solitons of homogeneous cubic nonlinear
media; in particular, such similaritons have the same spatial
or temporal profiles as the corresponding solitons. The
integrability of the (1 4 1)D Kerr case guarantees stability
of soliton-like similaritons. To stress a connection between
the soliton-like similaritons of open inhomogeneous systems
and the solitons of homogeneous integrable systems with
the same nonlinearity, the term nonautonomous solitons was
coined [11].

The concept of soliton-like similaritons appears, however,
to extend to nonintegrable nonlinear systems. Indeed, the
important role self-similarity plays in Kerr-like systems
of higher dimensionality has been recently elucidated in
Ref. [12]. In particular, self-focusing of (2 + 2)D beams in
homogeneous Kerr media was numerically studied and a
self-similar character of the beam collapse established. It was
shown that regardless of the initial beam intensity profile, the
central part of the beam collapses to a universal soliton-like
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profile, which essentially corresponds to an unstable (2 + 2)D
soliton in a self-focusing Kerr medium [13,14]. All this
prompts a fundamental question: Can soliton-like similaritons
be supported by other than Kerr (nonintegrable) nonlinear
media? And if so, under what conditions, if any, are such
similaritons structurally stable?

In this Rapid Communication, we show analytically and
numerically that stable (1 + 1)D spatial similaritons can
propagate in media with self-focusing quintic nonlinearities.
Depending on the sign of a phase chirp, novel similaritons are
either self-focusing or spreading for the same—assumed to be
positive hereafter—sign of the quintic medium nonlinearity.
We demonstrate that soliton-like similaritons can be realized
in a wide range of parameters of quintic nonlinear media.
We estimate an input power required for the experimental
realization of such similaritons. Similariton stability is estab-
lished with the aid of numerical simulations. We also present
a generic model for the quintic nonlinearity by considering
a centrosymmetric medium, doped with resonant impurities
whose resonant frequencies lie sufficiently far away from the
beam carrier frequency. We show how the detuning from the
impurity resonance can serve as a useful control parameter to
engineer the desired nonlinearity of the medium.

Generic model of the quintic nonlinearity. We begin by
considering a planar waveguide, filled with a centrosymmetric
nonlinear medium, which is, in turn, doped with resonant
impurities. The latter could be rare-earth element atoms or
quantum dots (QD); eurbium- or QD-doped glasses, or semi-
conductors doped with quantum dots, for instance, can serve
as possible realizations of the system. We treat the impurities
in the two-level approximation. Within this framework, the
slowly varying envelope & of a quasimonochromatic light
beam obeys the Maxwell equation in the form
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Here the first term on the right-hand side of Eq. (1) describes
the nonlinear polarization due to the resonant impurities while
the remaining terms characterize the nonlinear interaction of
light with the bulk medium. In Eq. (1), N is the dopant
density, d., is a dipole matrix element between the excited
and ground states—appropriately labeled—of an individual
impurity atom; o, is a steady-state value of the atomic dipole
moment, and n, as well as n4 are cubic and quintic nonlinear
coefficients of the bulk medium response.
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The impurity dipole moment and inversion obey the
standard Bloch equations [15]

00 = —y10 —iAo —iQuw, 2)
and

dw = —yy(w+ 1)+ %(Qo* —oQY), 3)

where y, () is a transverse (longitudinal) decay rate of the
atomic dipole moment (inversion); 2 = 2d,.& /h is the Rabi
frequency, A is a detuning of the incident light from atomic
impurity resonance, and it is assumed that in equilibrium all
atoms are in a (nondegenerate) ground state. It can be shown
that in the cw limit and assuming the light carrier frequency lies
sufficiently far off resonance with the impurities—the detuning
is much larger than the transverse relaxation rate A > y; —we
can use Eqgs. (2) and (3) to adiabatically eliminate the atomic
variables. The resulting steady-state dipole moment may then
be developed into a series in inverse A as
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We can easily infer from Eqgs. (1) and (4) that sufficiently far
away from impurity resonances, the dopant response is approx-
imately purely dispersive, leading to the renormalization of
the nonlinearity coefficients of the bulk medium. In particular,
while the first term in (4), rescaling the global phase of the
field envelope, may well be omitted, the second and third ones
govern the off-resonance impurity contributions to the third-
and fifth-order nonlinearities, respectively. Accordingly, the
analysis indicates that for a judicious choice of the frequency

detuning,
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the impurity-generated and the bulk third-order nonlinearities
cancel each other, resulting in an effective renormalized quintic
nonlinearity with the coefficient

dyininges > "
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where ng is a linear refractive index of the bulk medium, and
we have used Egs. (1), (4), and (5) to obtain Eq. (6).

Prior to introducing scaled dimensionless variables, let us
estimate the order of magnitude of the necessary detuning and
the effective quintic nonlinearity coefficient. To this end, we
consider a realistic example of a silica-glass matrix doped with
CdS QDs. In general, the transverse (phase) relaxation rate is a
few times greater than the longitudinal (population) one, so we
assume, for simplicity, y; = 2.5y; we also consider a typical
value of the dipole matrix element to be |dg,| =~ 10728 Cm at
a transition wavelength in the middle of the visible spectrum
A = 500 nm [16]. Further, we have for silica glass ny ~ 1.45
and n, ~ 10722 m?/V?2. With these numerical values, we can
show that A, and ng4.s scale with the dopant density N as

Naeft = N4 + N2 ( (6)

A, 108 x N3 57l g 1075 x N™23m*/vE (7)

We note in passing that in deriving Eq. (7), we neglected the
bulk quintic nonlinearity which is “the worst case scenario”
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as far as the critical power for similariton formation is
concerned. Indeed, if the bulk contribution is comparable with,
or greater than the impurity contribution, the critical power for
similariton formation in such a material will be lower than that
evaluated toward the end of this work.

It follows from Eq. (7) that the effective nonlinearity can
be boosted by reducing N at the expense of decreasing the
detuning. The acceptable trade off can, in fact, be accom-
plished for sufficiently dilute QD samples: For instance for
N 2~ 102 m™3, nger ~ 10733 m*/V*, while A, ~ 10'? s~
Note that a typical exciton lifetime of roughly 100 ps [16,17]
translates into y; ~ 10'® s=! such that the system is well
within the confines of a purely dispersive large-detuning
regime A, >y, .

The nonlinear wave equation for the field envelope in the
medium with the renormalized nonlinearity then simplifies as

i% n iﬁ n kngefr
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In the following, it will prove convenient to introduce dimen-
sionless variablesas X = x/wo, Z =z/Lp;Lp = kw(z), being
a characteristic diffraction length U = (kngegrLp/no)'/*& and
recast Eq. (8) as

|&1*¢ = 0. (8)
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Similariton solutions and their properties. We surmise by
inspection of Eq. (9) that a family of spatial similaritons
is supported by the media with quintic nonlinearity; the
similariton field is sought in the form

1 |:X - X,(2)
R
VW(Z) W(Z)
where W is a similariton width and X, is a guiding center

coordinate. The self-similar profile (10) conserves the beam
power £ (per unit length in the other transverse dimension),

UX,Z) = }e“’“z% (10)

P = /dX|U|2 = /dn|U(n)|2 = const, (11)

where we introduced the similarity variable 7 viz.,
X —X(2)

12
WZ) (12)
Substituting the profile (10) back into Eq. (9), we obtain
an ordinary differential equation for the similariton envelope
whose bound solution is

R(n) = ,/\/gsechn. (13)

We note in passing that a fundamental (1 + 1)D bright soliton,
supported by the quintic nonlinearity, has the same intensity
profile, but it is known to be unstable [18]. The explicit
dynamics of the field profile depend on the particulars of the
phase evolution which is found to be given by

D(X,Z) = —1C(Z)(X — X0)* + O(2). (14)
Here the phase chirp C obeys the equation

Co

C(Z)= —2,
2 1—CoZ

15)
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where X is the coordinate of the center of curvature, and the
offset phase is given by

1
8Co(1 — CoZ)
As a result of amplitude-phase coupling, the similariton

width and guiding center dynamics are governed by the
equations

0(2) = (16)

WZ)=1-CyZ, 17
and

Xg(Z) = Xg0 — Co(Xe0 — Xc0)Z. (18)

It follows from Eq. (17) that depending on the chirp sign,
the similaritons in quintic media can be either self-focusing—
with rapidly increasing amplitude and shrinking width—or
spreading at a faster rate than do freely propagating beams.
As can be inferred from Eq. (18), the guiding center moves
with a constant velocity V = Co(X g0 — Xc0). The direction of
motion depends on the sign of the chirp and relative initial
positions of the guiding center and the center of curvature.
Further, observe that as follows from Eqs. (10) and (17), the
peak intensity of each similariton scales as

Inmax(Z) (19)

1—-CoZ’

First, consider the self-focusing case Cy > 0. In Fig. 1
we display numerical evolution of a self-focusing similariton
profile on propagation in the medium. We observe that the
similariton maintains its structural integrity over, at least,
80 diffraction lengths. In the inset to Fig. 1, we exhibit the
evolution of the peak similariton intensity. The solid curve
represents our analytical result, Eq. (19), and the crosses
indicate numerically evaluated peak intensities at chosen
propagation distances. After having initially increased almost
linearly over small propagation distances, the peak intensity is
seen to start increasing faster with the distance in accord with
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FIG. 1. Intensity profile of a self-focusing similariton as a
function of the propagation distance in dimensionless variables.
Xq0 =1,X, = 100,and Cy = 0.01. Inset: the straight line represents
the theoretical peak intensity as a function of the propagation distance;
crosses show numerical values of the peak intensity at chosen
propagation distances.

RAPID COMMUNICATIONS

PHYSICAL REVIEW A 81, 051801(R) (2010)

0.8

0.6
0.4

0.2

Intensity

0.5

V]

FIG. 2. Intensity profile of a self-defocusing similariton as a func-
tion of the propagation distance in dimensionless variables. X o = 1,
X0 =100, and Cy = —0.01. Inset: the straight line represents the
theoretical peak intensity as a function of the propagation distance;
crosses show numerical values of the peak intensity at chosen
propagation distances.

our theory. The crosses all lie on the theoretical curve, within
tiny round off numerical errors.

We can infer from Eqs. (17) and (19) that the width
decreases and peak intensity increases without limit over a
finite propagation distance Z,, = 1/Cy, although the total
power still remains finite. Our solution becomes invalid
long before the collapse takes place, though, as the paraxial
approximation breaks down for small enough beam widths.
We then stress that present self-focusing similaritons, just as
the Townes profile for the (2 + 1) D Kerr case [12], describe a
self-similar stage of beam self-focusing, leading eventually
to the collapse. Thus, our similaritons can be viewed as
intermediate asymptotics in the spirit of Ref. [1].

Next, we consider the self-defocusing case Cy < 0. The
corresponding numerical evolution of the similariton profile is
shown in Fig. 2. The similariton width is seen to increase with
the propagation distance. Unlike the self-focusing case, there is
no constraint on the range of propagation distances over which
the self-defocusing solution is theoretically valid. In the inset,
we again compare the theoretical behavior of the similariton
peak intensity (solid line) with the numerically evaluated one
(crosses). We note excellent agreement between the analytical
and numerical results.

To further ascertain the structural stability of the novel self-
similar solutions, we add 5% asymmetric noise to the initial
similariton profile and numerically propagate the combined
beam. The result is displayed in Fig. 3 and it clearly attests to
the similariton stability.

Finally, we estimate the critical power needed to generate
the novel similaritons. As they all have the same power by the
scaling properties of Eq. (10), the latter can serve as the critical
power which can be expressed as

3 v)
Py = Oho [ Mo€oCAlL ’ (20)
8nef 4

051801-3



SERGEY A. PONOMARENKO AND SOODEH HAGHGOO

FIG. 3. Numerical evolution of the similariton with added 5%

asymmetric noise. The initial parameters are X 0 = 1, X,o = 10, and
Cy = 0.01. All quantities are dimensionless.

where [, is a waveguide width in the trapped direction. Using
the previously estimated effective nonlinearity coefficient, we
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obtain
P, ~10° x I, N'*W. (21)

It is seen from Eq. (21) that for N ~ 10 m~3 and [, ~ 5 um,
we can arrive at the estimate, P, >~ 50 W. Such input powers
are easily achievable with quasi-cw—millisecond long, say—
laser pulses for which our cw theory is perfectly appropriate.

In summary, we demonstrated that stable spatial similari-
tons can be supported by quintic nonlinear media. Depending
on the sign of the chirp, the similaritons can be self-focusing
and self-defocusing. We also show how quintic nonlinearities
can be engineered in centrosymmetric media doped with
low-density impurities of resonant atoms or quantum dots.
In the limit of large detuning of light from the impurity
resonance frequency, the detuning serves as a convenient
control parameter to design the right kind of nonlinearity,
much like the phase mismatch parameter does in the case
of a cascaded second harmonic generation process studied
elsewhere [19].

Note added. The authors have recently become aware of
Ref. [20] where self-focusing self-similar solutions of Eq. (9)
were independently found by a different method.
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