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Self-similarity and optical kinks in resonant nonlinear media
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We show that self-similar optical waves with a kink structure exist in a wide class of resonant nonlinear media,
adequately treated in the two-level approximation. The self-similar structure of the present kinks is reflected in
the time evolution of the field profile, atomic dipole moment, and one-atom inversion. We develop an analytical
theory of such kinks. We show that the discovered kinks are accelerating nonlinear waves, asymptotically attaining
their shape and the speed of light. We also numerically explore the formation and eventual disintegration of our
kinks due to energy relaxation processes. Thus, the present kinks can be viewed as intermediate asymptotics of

the system.
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The quest for structurally stable nonlinear waves, which
maintain their intensity—and sometimes even phase—profiles
in open physical, chemical, and biological systems, has been
in the forefront of contemporary nonlinear science. Self-
similar waves or similaritons—whose intensity profiles remain
scaled replicas of themselves on propagation—can serve as
a prominent example of structurally stable waves in open
systems. Although self-similarity has long become textbook
material in fluid and gas [1,2] and solid mechanics [2] as well as
in plasma physics [3], the concept has only relatively recently
percolated into nonlinear optics [4]. To date, self-similarity
in Bragg gratings [5], stimulated Raman scattering [6], self-
written waveguides [7], and fractal formation in nonlinear
media [8] have been studied among other topics. More
recently, however, the focus has shifted to two major classes of
similaritons: asymptotic and solitonlike ones. The asymptotic
temporal [9,10] or spatiotemporal [11] similaritons, forming
in fiber amplifiers in the normal dispersion regime over long
propagation distances, were theoretically predicted [9,10] and
experimentally realized [10]. At the same time, bright and dark
solitonlike similaritons have been theoretically investigated in
fiber [12,13] and graded-index waveguide amplifiers [14], and
in trapped Bose-Einstein condensates [15]. The vast majority
of research on optical similaritons has, however, been aimed
at understanding their behavior sufficiently far away from any
internal resonance of the medium.

In this Rapid Communication, we show that an altogether
present kind of optical similaritons, kink-like similaritons, can
be supported by resonant nonlinear media. The different self-
similar kinks accelerate, asymptotically acquiring the speed of
light. An initial stage of their fast self-steepening is followed
by asymptotically slow formation of quasi-steady-state kinks.
All these features make the new kinks markedly different from
the previously examined steady-state ones, Raman induced in
optical fibers away from any resonance [16,17]. Interestingly,
there is a direct analogy between the new optical kinks and
the corresponding shocks in gas dynamics. The transverse
relaxation processes, which determine the temporal width
of the kink, are counterparts of gas viscosity. At the same
time, the longitudinal relaxation processes, which lead to kink
decay and eventual disintegration, are direct analogs of thermal
processes in gases which cause shock disappearance. There
are, however, two fundamental differences between optical
kinks and shocks in gases or fluids. First, while the former do
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not require any background intensity, the latter form against a
finite velocity background, determining the sound velocity in
a gas or fluid. Second, whereas the gas shocks propagate with
a constant supersonic speed, the present kinks are accelerating
self-similar waves.

In this work, we treat resonant media in the two-level
approximation. The model is sufficiently general to describe
a broad range of resonant nonlinear media from atomic
vapors and solids, doped with resonant atoms [18], to bulk
semiconductors, doped with quantum dots [19]. Thus our
analytical and numerical results may find applications to a
multitude of physical systems as diverse as dilute gases and
solids.

We begin by considering a light pulse with a carrier
frequency w near optical resonance frequency wy of a two-level
atom medium. To focus on the main aspects of the problem, we
make two assumptions. First, we assume that the pulse is not
chirped, implying that Q* = Q. Second, we assume that the
transverse relaxation rate y; —defined as the corresponding
inverse relaxation time—dwarfs the longitudinal one, y,
as well as the characteristic width of inhomogeneous
broadening §,

YL>68, yvL>v. (D

The first inequality implies that all impurity atoms are
assumed to be effectively on resonance with the field such
that inhomogeneous broadening can be ignored. The second
inequality means that the atomic dipole moments evolve
much faster than the atomic population dynamics unfolds.
The existence of a hierarchy of widely separated in-time
relaxation processes results in the emergence of two widely
separated in-space characteristic propagation distances: a
typical distance ¢, over which the new kinks are formed and
a characteristic energy relaxation distance ¢, beyond which
the kinks gradually decay. The different kinks maintain their
self-similar structure in the intermediate range, {, < { <K Cyx-

Within the framework of our model and subject to the slowly
varying envelope approximation (SVEA), the pulse evolution
is governed by the reduced wave equation in the form,

2
9, Q= — 5y, )
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Here, Q = 2d,,E /R is the Rabi frequency associated with the
pulse amplitude £, N is a density of impurity atoms, and d, is
a dipole matrix element between the ground and excited states
of any atom; the two relevant atomic states are appropriately
labeled with the indices g and e. Furthermore, Eq. (2) is written
in terms of the transformed coordinate and time, { = z and
T =t — z/c. The relevant atomic dipole moment v and one-
atom inversion w obey the Bloch equations [18] which, in our
case, are simplified as

v =—y1v+ Qu, 3)
and
0w = —Qu. “4)

In deriving Egs. (3) and (4), we neglected longitudinal
relaxation processes, an assumption to be examined later with
the help of numerical simulations.

The inspection of Egs. (2)—(4) reveals the existence of self-
similar solutions for the Rabi frequency,

Q(z,0) = y1Q), ®)

and for the atomic variables,

v(r,0) = e (), w(r,g)=e " wmn). (6)
Here the similarity variable is defined by the expression,
2kN|deg|*
n=age T o= 2l )
yL€oh

where we introduced a linear absorption coefficient « and
k=uw/c.

The dimensionless Rabi frequency £ and scaled atomic
variables, v and w, obey the set of ordinary differential
equations (ODE):

2Q =7, (8)
n' = —Quw, 9)

and
(nw) = Qu, (10)

where the prime denotes a derivative with respect to the
similarity variable. Combining Egs. (8)—(10) and integrating
once with the aid of the asymptotic condition Q(0) = Q,, we
arrive at the ODE for a kink profile,

Q= -1a@ -2 (11
The analysis of Eq. (11) indicates that at the trailing edge

of the pulse, T — 400, the kink profile at any propagation
distance asymptotically behaves as

_ 1+4/1 -4,
Q=Qx—ICln"; s= — (12)

where C is a constant. By the same token, at the leading edge,
T — —00, the kink field strength falls off as

1441420
——=

The kink profile is exhibited in Fig. 1 as a function of time.
It follows from (12) and (13) that (i) the kink structure is

Q~n, g= (13)
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FIG. 1. Kink profile as a function of time, measured in the units of
the transverse relaxation time, 7, = 1/y, . The dimensionless Rabi
frequency jump is taken to be Q4 = 1/2.

determined entirely by the magnitude of the Rabi frequency
jump, Q, and (ii) the kink has no chirp if the latter satisfies
the inequality,

Qoo < ¥1/2; (14)

otherwise our solution is not consistent. The condition (14)
specifies the range of parameters for which kinks with
monotonous profiles are realized in resonant media. It can
be physically interpreted as follows. The Rabi frequency jump
must be smaller than a certain critical value determined by
the transverse damping constant such that the system is in an
overdamped regime with no Rabi oscillations. The latter would
lead to pulse chirping which, in turn, would cause modulations
of the kink profile.

Further, we can infer from Egs. (8)—(10) that the one-atom
inversion can be expressed as

1 — .
w(g,T) = E[sf(n) L (15)

It follows at once from Eq. (15) and the definition of
the inversion that at the leading edge of the kink: wy, =
—ﬁio /¢ = —1, implying that our self-similar solution is valid
over the distances such that
92
ay;

Here ¢, is the lower bound of a characteristic distance
over which the kink is formed. Thus the present kinklike
similaritons are intermediate asymptotics of the system in the
spirit of Ref. [2]. On the one hand, they form over distances of
the order of ¢, after the transient dynamics, induced by specific
initial conditions, have died away. On the other hand, the new
kinks remain intact only over spatial scales much shorter than
the characteristic energy relaxation distance determined by the
longitudinal relaxation constant yj.

We also note that at any (finite) propagation distance over
which our kinks have already formed, the atomic dipole
moment v asymptotically tends to zero, albeit asymmetrically,
at both ends of the kink: v ~ —e9"*" at the leading edge, and

(16)
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FIG. 2. Atomic dipole moment (left) and one-atom inversion (right) as functions of dimensionless time, y, 7, displayed at several propagation
distances: Solid, ¢ = 25; dotted, a¢ = 40, and dashed, «¢ = 50. The propagation distances are measured in the units of inverse Beer’s

absorption length, &~

v~ —e VLT at the trailing edge of the pulse, respectively.
The time evolution of w and v is displayed in Fig. 2 for
several propagation distances; a self-similar structure of the
atomic state evolution is unambiguously reflected in the figure.
Physically, the behavior of the inversion can be explained
by observing that at the leading edge of the kink, where
the light intensity is very small, there are much more atoms
in their ground states than are excited atoms, resulting in
a negative value of w. At the trailing edge, however, a
large pulse amplitude saturates the medium, implying zero
inversion.

Next, we reveal unusual dynamic properties of the dis-
covered kinks. It follows from Eq. (7) that the speed U
of a kink wave front depends on the propagation distance
according to

yigc

. 17
c+vyig a7

U@ =

Thus the discovered kinks accelerate on propagation, asymp-
totically attaining the speed of light. In reality, however,
a characteristic distance over which their speed becomes
sufficiently close to ¢, can be quite short, of the order
of oo ~ c¢/y,. For example, for solids or semiconductors
doped with resonant atomic impurities or quantum dots,
10" <y, <108, s7!, leading to the estimate, 0.03 <
foo S 3 cm.

We now discuss kink formation. A constant background
intensity at the trailing edge of the input wave is required to
produce a kink. In laboratory, such pulses can be generated
by switching on cw lasers, for example. In our numerical
simulations, we then consider an adiabatically switched
cw wave of the form,

Qo

Q0,1) = m,

(18)

where €2 is the amplitude—measured in frequency units—of
the cw laser field and 7, is a characteristic time constant
of the switching process. We emphasize that a particular
functional form (18) is not important: we obtained qualitatively
similar results for wave self-steepening and kink formation

with different input wave profiles having a finite background
intensity at the trailing edge.

The atoms are assumed to be initially in their ground states
and the one-atom inversion obeys the Bloch equation,

ow = —y(w+1)—Qu, (19)

where the energy (longitudinal) relaxation processes are
taken into account. Our numerical simulations indicate that
monotonous kinks form provided that

Qe < Q0 < yL/2, (20)

where the magnitude of a critical amplitude €2, depends on the
value of y|. The presence of a critical power threshold for kink
formation is explained as follows. The incident wave should
have enough power to start self-steepening despite energy
losses caused by longitudinal relaxation processes. Clearly,
the shorter the longitudinal relaxation time, the greater the
initial amplitude is required to generate a kink.

The results of numerical simulations of Egs. (2), (3), and
(19), with the initial condition (18), are displayed in Figs. 3
and 4. In Fig. 3, we show self-similar kink formation for
sufficiently long energy relaxation times, 7/ T, = 10*. After
a brief stage of fast self-steepening, exhibited in the inset to
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FIG. 3. Dimensionless Rabi frequency Q of a forming kink as a
function of dimensionless time, ¥, 7, and propagation distance «¢.
The ratio of transverse to longitudinal relaxation times is 7', /T =
10~*. The initial parameters are Q2 = 0.5y, and 7, = 1007, . The
inset shows the initial stage of fast self-steepening.

051801-3



SERGEY A. PONOMARENKO AND SOODEH HAGHGOO

,/'/ —
e /'/
06 . T
/ - o
Il.f -~ o -
05 / e e
/ / ‘/
{ / _/'-/ /’—
| II I| - -
0.4 | [ et
N N Y e
[ || ( / / P .
o 03 ! . .
Q I,' } | | .// -
{ | ll f | —
0.2 I|| || | I I| f / )
| | ’ ) / | ;.,. /
) -
0.1 / .-'J [ / / -
;oo 4 7 / Sl
- / Ay / / / gl
— R A e e e e
e - - o R -
0.0 <{_q$/ 5 gl AP S G G5 i g
e e T T e T T 400
R TR T . o i —
po S e e T e
20 - o o - e =
Sl e e 00
W e
al 40— O
50 _200 7.t

FIG. 4. Dimensionless Rabi frequency Q of a forming kink as a
function of dimensionless time, y, 7, and propagation distance «¢.
The ratio of transverse to longitudinal relaxation times is 7', /T =
1072, The initial parameters are Q9 = 0.5y, and 7, =207T,.

the figure, the wave self-steepening slows down at distances of
the order of ¢, corresponding to the kink having attained the
speed close to the speed of light. The subsequent asymptotic
self-steepening leads to quasi-steady-state kink formation. The
critical amplitude in this case is found to be 2. = 0.2y, .
The numerically obtained kink profile coincides, to a good
accuracy, with the analytically determined one, which justifies
neglecting the longitudinal relaxation processes in Eq. (4) [20].
In Fig. 4, we exhibit the influence of the latter on kink
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formation. One can see in the figure that for relatively short
energy relaxation times—in our instance for 7 /T, = 10>—
the emerging kinks survive only briefly: the energy dissipation
eventually takes its toll over longer distances.

Finally, we briefly mention the systems in which present
kinks can be realized. The characteristic transverse and
longitudinal relaxation times for solids, doped with res-
onant atom impurities, fall into the ranges 107 < Ty <
1073 and 10713 < T, < 107! s [21,22], respectively. Thus,
100 < ViV < 109, which makes solids ideal for realization
of the present kinks, provided inhomogeneous broadening
can be reduced by preparing clean enough samples. At the
same time, relaxation times for bulk semiconductors, doped
with quantum dots, range as follows, 10712 < Ty < 10~* and
10713 < T, < 1072 s[21]. Consequently, 1 <y, /y; < 10°,
and hence our kinks can be realized in some semiconductor
systems as well.

In conclusion, we have discovered and analytically de-
scribed a class of self-similar waves in resonant nonlinear
media, optical kinks. The present kinks can form in two-level
media under the assumption that the longitudinal relaxation
time is much longer than the transverse one. Thus a wide
range of intermediate propagation distances exists over which
the kinks are formed as a result of the interplay of optical
nonlinearity and the phase (transverse) relaxation processes;
yet the influence of the energy (longitudinal) relaxation
processes is still negligible. We stress, however, that our results
pertain to the case of negligible inhomogeneous broadening,
which requires rather clean samples, and for chirp-free waves.
We conjecture that the presence of a chirp may lead to

oscillatory kink profiles.
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