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Abstract: We develop a general representation for ensembles of
non-stationary random pulses in terms of statistically uncorrelated, time-
delayed, frequency-shifted Gaussian pulses which are classical counterparts
of coherent states of a quantum harmonic oscillator. We show that the
two-time correlation function describing second-order statistics of the
pulses can be expanded in terms of the complex Gaussian pulses. We also
demonstrate how the novel formalism can be applied to describe recently
introduced Gaussian Schell-model pulses and pulse trains generated by
typical mode-locked lasers.
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1. P-representation of statistical pulses: introduction and preliminaries

Relentless recent progress in ultrafast optics [1] has motivated the quest for a better insight into
statistical features of non-stationary sources generating ultrashort optical pulses. To this end,
the extension of the usual optical coherence theory, which deals with statistically stationary
light [2, 3], is required. The pioneering work in this direction [4, 5] was followed by the explo-
ration into non-stationary spectra of generic statistical pulses [6] and the development of coher-
ence theory of cyclostationary random pulses [7]. Concurrently, particular models of partially
coherent non-stationary sources, notably Gaussian Schell-model one, were introduced and the
corresponding optical fields were explored [8–10]. The evolution of partially coherent pulses
in linear dispersive media was also examined [11, 12] and the generalization of correlation-
induced spectral changes to non-stationary random pulses was presented in Ref. [13].

The purpose of this work is to formulate a statistical theory of random pulses in the language
that is sufficiently flexible to describe a variety of partially coherent pulse models on the one
hand, and on the other hand, establishes a clear link with experimentally realizable ultrashort
pulses. To this end, we represent each statistical pulse as a linear superposition of uncorrelated,
time-delayed, frequency-shifted Gaussian pulses–which can be routinely produced in the labo-
ratory by standard lasers–with a statistical distribution of emission times and carrier frequency
shifts. The complex Gaussian pulses are classical analogues of coherent states of a quantum
harmonic oscillator. By analogy with the Glauber-Sudarshan P-representation in quantum op-
tics [3], we can then express the second-order two-time correlation function of any statistical
pulse as an integral over an over-complete non-orthogonal set of complex Gaussian pulses.
We then discuss the application of the advanced representation to several particular cases of
practical interest.

We start by considering a time-delayed by ts Gaussian pulse with the carrier frequency shifted
to ωs; the pulse has the temporal profile

ψ(t; ts,ωs) = Aexp

[
− (t − ts)2

2t2∗

]
eiωst , (1)

where A and t∗ are a real amplitude and width of the pulse. Transforming to dimensionless
variables, T = t/t∗, Ts = ts/t∗, and Ωs = ωst∗–which we are going to use hereafter unless we
indicate otherwise–we obtain, after elementary algebra, the following expression

ψα(T ) =
e−(Imα)2

π1/4
exp

[
− (T −√

2α)2

2

]
. (2)

Here the complex displacement conveniently combines time delay and frequency shift viz.,

α =
1√
2
(Ts + iΩs). (3)

In Eq. (2) we chose the amplitude A such that the pulse profile function is normalized to unity:∫ ∞

−∞
dT |ψα(T )|2 = 1. (4)

Let us now look at an unnormalized coherent state of the quantum harmonic oscillator [3]

|α〉= A
∞

∑
n=0

αn
√

n!
|n〉, (5)
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It follows from Eq. (5) that the coordinate-representation wave function of the coherent state is
given by

ψα(x) = 〈x|α〉= A
∞

∑
n=0

αn
√

n!
〈x|n〉, (6)

where the number state |n〉 can be expressed in the coordinate representation as

〈x|n〉= 1√
π1/22nn!

Hn(x)e
−x2/2. (7)

Performing summation over n on the r.h.s of Eq. (6) with the aid of Eq. (7) and the generating
function for Hermite polynomials Hn(x) in the form [14]

e2sx−s2
=

∞

∑
n=0

sn

n!
Hn(x), (8)

we arrive at the final expression for the normalized coherent state wave function in the coordi-
nate representation as

ψα(x) =
e−(Imα)2

π1/4
exp

[
− (x−√

2α)2

2

]
. (9)

Equation (9) is identical with Eq. (2) apart from the notation. Thus, the (normalized) complex
Gaussian pulses have the same profiles as the coherent states.

As a consequence of the outlined mathematical equivalence, the complex Gaussian pulses
form a complete set such that ∫

d2α |α〉〈α|= 1. (10)

Alternatively, by introducing time bra- and ket-vectors, 〈T | and |T 〉, we can re-write the com-
pleteness relation explicitly in the temporal representation as

∫
d2α ψα(T )ψ∗

α(T
′) = δ (T −T ′), (11)

where we denoted ψα(T ) = 〈T |α〉.

2. P-representation of statistical pulses: general formalism

Consider an ensemble of random pulses {E(T )}. Hereafter, we find it convenient to decompose
the electric field E(T ) into a (usually) slowly-varying envelope U(T ) and a carrier wave [15]
such that

E(T ) =U(T )e−iΩcT , (12)

where Ωc is a deterministic carrier frequency of the pulse. The second-order statistical proper-
ties of the ensemble {U(T )} are specified by the cross-correlation function

Γ(T1,T2) = 〈U∗(T1)U(T2)〉, (13)

where the angle brackets denote ensemble averaging. Similarly to the spatial case [16], we
can introduce a statistical operator Γ̂ such that its matrix elements correspond to the two-time
correlation function,

Γ(T1,T2)≡ 〈T2|Γ̂|T1〉. (14)

Following the quantum optical development, we can represent the statistical operator in a diag-
onal form as

Γ̂ =

∫
d2αP(α)|α〉〈α|. (15)
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Equation (15) is a classical analogue of the well-known Glauber-Sudarshan P- representation
of the quantum density operator [3]; it can be written in the matrix form as

〈T2|Γ̂|T1〉=
∫

d2α P(α)〈T2|α〉〈α|T1〉, (16)

implying in more “classical” notations that

Γ(T1,T2) =
∫

d2α P(α)ψ∗
α(T1)ψα(T2). (17)

Notice that one can formally invert Eq. (17) to determine the classical P-distribution in terms of
the two-time correlation function. With this purpose, we can again borrow the known expression
for P(α) in the matrix form [3]

P(α) =
1

π2

∫
d2β e|α |2+|β |2〈−β |Γ|β 〉eβ ∗α−α∗β , (18)

and expand the rhs in terms of complete sets of time ket-vectors to yield

P(α) =
e|α |2

π2

∫
d2β e|β |

2
eβ ∗α−α∗β

×
∫ ∞

−∞
dT1

∫ ∞

−∞
dT2 Γ(T1,T2)ψ∗

−β (T1)ψβ (T2). (19)

In principle, Eqs. (17) and (19) solve the problem of finding the appropriate complex Gaussian
representation for any statistical pulse. In practice, of course, the integrals in Eq. (19) can fail
to converge in the space of ordinary functions, making the P-representation cumbersome in the
case.

An alternative–yet equivalent–statistical representation of random pulses is arrived at by ex-
amining an expansion of a statistical ensemble member U(T ) in terms of the complex Gaussian
pulses with random amplitudes c(α) as

U(T ) =
∫

d2α c(α)ψα(T ). (20)

We conclude with the help of Eq. (13) that for the expansion (Eq. (20)) to be compatible with
the P-representation (Eq. (17)), {c(α)} must be uncorrelated, obeying

〈c∗(α ′)c(α)〉= P(α)δ (α −α ′). (21)

The just derived stochastic expansion can serve as a good starting point for synthesizing new
partially coherent pulses from complex Gaussian ones.

It is instructive to compare the developed representation with a coherent-mode decomposi-
tion of optical coherence theory, originally formulated for spatial fields [17]. According to the
latter, the cross-correlation function of the pulse can be expanded into a Mercer-type series as

Γ(T1,T2) = ∑
n

λnφ ∗
n (T1)φn(T2), (22)

where the modes φn(T ) form a complete orthonormal set such that
∫ ∞

−∞
dT φ ∗

m(T )φn(T ) = δnm. (23)
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Each mode and the corresponding eigenvalue λn are determined by solving the linear integral
equation in the form ∫ ∞

−∞
dT1 Γ(T1,T2)φn(T1) = λnφn(T2). (24)

Equivalently, each ensemble member U(T ) can be represented using the Karhunen-Loève ex-
pansion

U(T ) = ∑
n

anφn(T ), (25)

where the stochastic amplitudes are uncorrelated and normalized such that

〈a∗man〉= λnδnm. (26)

Notice that the modes of the coherent-mode theory can have arbitrary temporal profiles, de-
pending on particulars of the pulse statistics. The modes are determined by solving the integral
equation (Eq. (24)), which can be a formidable mathematical task. In contrast, the advanced P-
representation is always formulated in terms of complex Gaussian pulses. Not only are the latter
mathematically well-behaved and physically realizable, but they also remain shape-invariant
on propagation through linear temporal elements–including time-lenses–and linear dispersive
media. Hence, the advanced P-representation is expected to be superior to the coherent-mode
approach whenever P-distributions of pulses turn out to be well-behaved ordinary functions.

It is also instructive to compare the complex Gaussian representation with the elementary-
pulse-representation introduced in Ref. [10]. While the former can be used either to concoct
novel sources or to represent the sources with given cross-correlation functions using Eqs. (17)
and (19), the elementary pulse envelopes do not, in general, form a complete set and hence do
not allow for a general cross-correlation function representation.

3. Examples and discussion

As the first example, we examine the P-representation of a recently introduced [8, 9] nonsta-
tionary Gaussian Schell-model (GSM) source with the cross-correlation function

Γ(T1,T2) = I0 exp

[
−T 2

1 +T 2
2

2σ2
p

]
exp

[
− (T1 −T2)

2

2σ2
c

]
, (27)

where we introduced the dimensionless pulse width and coherence time: σp = tp/t∗ and σc =
tc/t∗. Substituting from Eq. (27) into Eq. (19), we obtain, after lengthy but straightforward
algebra, the P-distribution of the GSM pulsed source in the general form

P(Ts,Ωs) =
2I0√

π2(1−1/σ2
p)(2/σ2

c +1/σ2
p −1)

×exp

[
− T 2

s

σ2
p(1−1/σ2

p)
− Ω2

s

2/σ2
c +1/σ2

p −1

]
. (28)

Here we expressed the answer in physical variables Ts and Ωs related to α by Eq. (5). As is
seen from Eq. (28), the scaling factor t∗–the width of a complex Gaussian pulse–serves as an
additional degree of freedom in choosing the most adequate P-distribution for a given source
model. In this case, the choice σp → 1, implying that t∗ → tp and σc = tc/tp, leads to the
simplest and most physically transparent representation

P(Ts,Ωs) =
I0σc√

π
δ (Ts)e−σ2

c Ω2
s /2. (29)
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In physics terms, Eq. (29) implies that a nonstationary GSM source of width tp can be rep-
resented by a superposition of statistically uncorrelated Gaussian pulses of the same width,
with no time delay and a Gaussian distribution of frequency shifts; the coherence time of the
source determines the distribution width. We note in passing that a somewhat similar represen-
tation to Eq. (29) can also be synthesized using the elementary-pulse-representation technique
of Ref. [10].

Another instructive application of the new formalism lies in the area of partially coherent
source modeling. In particular, novel partially coherent sources can be straightforwardly syn-
thesized by mixing a countable number of uncorrelated complex Gaussian pulses such that

P(α) = ∑
n

wnδ (α −αn), (30)

where wn ≥ 0 specifies the energy carried by the nth Gaussian pulse. It then follows from
Eqs. (17) and (30) that in the dimensional variables, the two-time cross-correlation function
takes the form

Γ(t1, t2) = ∑
n

wnψ∗
αn
(t1)ψαn(t2). (31)

Let us specialize to the case of αn = n(t0/t∗ + iω0t∗)/
√

2, where t0 and t∗ characterize the
individual Gaussian pulse peak time and width, respectively, and −N ≤ n ≤ N. The averaged
intensity profile of the resulting random pulse train takes the form

I(t) =
N

∑
n=−N

wn|ψαn(t)|2 =
1√
πt∗

N

∑
n=−N

wn exp

[
− (t −nt0)2

t2∗

]
. (32)

Provided N � 1 and t∗ � t0, Eq. (32) describes rather well the intensity of a random train
of realistic ultrashort mode-locked pulses with the individual pulses centered at the integer
multiples of t0, having a width of t∗; further, if wn = w0 = const and t∗ = t0/N, we have a
periodic train of identical mode-locked pulses generated in a cavity with a round-trip transit
time of t0 [18, 19].

We note in passing that in the fully coherent case, the pulse field can be expressed by Eq. (20)
with deterministic amplitudes {c(α)}. In particular, considering

c(α) = ∑
n

cnδ (α −αn), (33)

with αn = n(t0/t∗ + iω0t∗)/
√

2, we obtain a train of coherent Gaussian pulses with the field
profile

U(t) =
1√

π1/2t∗

N

∑
n=−N

cneinω0t∗ exp

[
− (t −nt0)2

2t2∗

]
. (34)

Equation (34) represents an ideal train of identical coherent Gaussian pulses provided that cn =
c0 = const, ω0 = 2π/t0 and t∗ = t0/N.

To summarize, we presented a novel formalism for describing statistical properties of ultra-
short random pulses. The proposed approach is based on the expansion–diagonal representa-
tion akin to the Glauber-Sudarshan P-representation of quantum optics–of the cross-correlation
function of any statistical pulse in terms of complex Gaussian pulses with the appropriately
distributed emission times and carrier frequencies. We showed how the complex Gaussian rep-
resentation can describe statistical features of Gaussian Schell-model pulses and the output
of realistic mode-locked lasers. The new representation is anticipated to find applications in
ultrafast optics and temporal imaging with ultrashort pulses.
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