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Abstract: We introduce the concept of phase-space separability degree of
statistical pulses and show how it can be determined using a bi-orthogonal
decomposition of the pulse Wigner distribution. We present explicit analyt-
ical results for the case of chirped Gaussian Schell-model pulses. We also
demonstrate that chirping of the pulsed source serves as a powerful tool to
control coherence and phase-space separability of statistical pulses.
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1. Introduction: Wigner function description of statistical pulses

The acute recent interest in femtosecond pulses and pulse sources [1] has triggered resurgence
of activity in the field of ultrafast statistical optics [2–11]. The latter should come as no sur-
prise as statistical properties of ultrashort pulses impose ultimate limits on the performance and
accuracy of the state-of-art fiber-optical communication systems, for instance; not to mention
that spontaneous emission noise degrades the output coherence of optical amplifiers [12]. To
date then, there has been extensive research done on modeling statistical properties of realis-
tic sources of ultrashort pulses [2, 3]. The fundamental issues of defining and measuring the
spectrum of statistical pulses [4] and formulating coherence theory of periodic statistical pulse
trains [5, 6] have been addressed. Due to its relevance for fiber optical communications, the
propagation of ultrashort statistical pulses in linear [13,14] and nonlinear [15] dispersive media
has also been explored. Further, several approaches have been recently advanced to synthesize
novel partially coherent pulses from uncorrelated–or partially correlated–superpositions of el-
ementary pulses in time [7] and frequency [8]. In addition, several phase-space approaches to
partially coherent pulse representation were discussed in the literature [9,10]. Lately, a general
phase-space approach has been put forward to describe partially coherent pulse synthesis from
complex Gaussian pulses [11]. A key feature of the complex Gaussian representation is its ver-
satility: It can be used to either generate new partially coherent pulses or represent the ones
with known cross-correlation functions in terms of statistically uncorrelated Gaussian pulses.

In this work, we show that a Wigner distribution based phase-space representation for sta-
tistical pulses provides a natural context to define a measure of their phase-space separability.
Next, we show how the introduced degree of phase-space separability can be determined us-
ing a bi-orthogonal decomposition of the Wigner distribution of the pulse. We then discuss the
way the new measure changes on chirped pulse propagation in linear dispersive media. Our
results are directly relevant for temporal imaging with ultrashort pulses which involves tem-
poral lenses, chirping the pulses, and dispersive delay lines, e. g., linear optical fibers [16].
To make our results more instructive, we specialize to a representative case of chirped Gaus-
sian Schell-model pulses for which closed-form analytical results can be obtained. It follows
from our results that chirping ultrashort partially coherent pulses can provide a potent tool for
controlling their degrees of coherence and phase-space separability.

To set the stage, we consider an ensemble of random pulses {E(t)} and decompose the
electric field E(t) into a slowly-varying envelope U(t) and a carrier wave [17] such that

E(t) =U(t)e−iωct , (1)
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where ωc is a deterministic carrier frequency of the pulse. The second-order statistical proper-
ties of the ensemble {U(t)} are specified by the cross-correlation function

Γ(t1, t2) = 〈U∗(t1)U(t2)〉, (2)

where the angle brackets denote ensemble averaging. The Wigner distribution (WD) of the
ensemble is then defined as

W (t,ω) =
∫ ∞

−∞
dτ Γ(t − τ/2, t + τ/2)e−iωτ , (3)

where we introduced the variables t =(t1+t2)/2 and τ = t1−t2. The intensity I(t) and spectrum
S(ω) of the pulse are determined by the appropriate marginals of the Wigner distribution viz.,

I(t) =
∫ ∞

−∞
dω W (t,ω); S(ω) =

∫ ∞

−∞
dt W (t,ω). (4)

Many phase space characteristics of the pulses, such as the position of the pulse center (in time),
central frequency of the envelope, rms temporal and spectral widths etc., can be determined as
the corresponding moments of I or S. Notice also that it follows at once from Eqs. (2) and (3)
that fully as well as partially temporarily and/or spectrally coherent pulses can be treated in the
same way using the Wigner distribution, the fully coherent case being just the limiting situation
when the cross-correlation function factorizes.

In this work, we will examine the WD evolution as pulses propagate in transparent homoge-
neous linear dispersive media. To this end, recall that the pulse envelope in such media obeys
the paraxial wave equation [18]

i∂zU − 1
2 β2∂ 2

ssU = 0, (5)

where we introduced the retarded time s = t − β1z, β1 being the inverse group velocity, and
β2 is the group-velocity dispersion (GVD) coefficient. It can be inferred at once from Eqs. (2)
and (5) that Γ obeys the evolution equation in the form

i∂zΓ+ 1
2 β2(∂ 2

s1s1
−∂ 2

s2s2
)Γ = 0. (6)

Thus, the WD propagation is governed by the first-order equation

∂zW +β2∂T W = 0, (7)

where the variables
T =

s1 + s2

2
, and τ = s1 − s2, (8)

were introduced. Solving Eq. (7) on characteristics, we obtain

W (T,ω;z) = W0(T −β2ω,ω). (9)

In other words, as a statistical pulse propagates in a linear dispersive medium such as an optical
fiber, say, its Wigner distribution in any transverse plane z = const can be related to its form
in the source plane, W0(t,ω), by a rather simple equation. Equation (9) is a temporal analog
of the well-known transformation law describing passage of partially coherent beams through
first-order optical systems [19, 20] and is a direct consequence of space-time analogy [21–23]
between beam and pulse propagation in free space and linear dispersive media, respectively.
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2. Quantifying phase-space separability of statistical pulses

The Wigner distribution contains all available information about second-order statistics of the
pulses. This information can be revealed by directly measuring the set of phase-space projec-
tions of WD known as a Radon-Wigner transform [24]. In general, however, such measurements
are rather involved. The situation drastically simplifies for WDs in the separable form such that

W (t,ω) ∝ I(t)S(ω). (10)

The separability of Eq. (10) implies that the second-order statistics of the system can be recov-
ered by separately measuring the intensity profile and spectrum of the pulse. This observation
prompts the question: Are there any realistic pulses with a separable WD? A related funda-
mental issue is: Given an arbitrary statistical ensemble of pulses, how can one quantitatively
describe phase-space separability of its WDs? And to follow up on this: How can one control
such separability, if at all?

To address the first question, it is sufficient to recall that a common technique to generate
statistical pulses involves temporal chopping of statistically stationary light fields [3]. We can
consider, for instance, chopping a Gaussian correlated statistically stationary field with a Gaus-
sian temporal modulation function. This procedure yields the so-called Gaussian Schell-model
(GSM) source [2] with the correlation function that can be transformed to

ΓGSM(t1, t2) = I

(
t1 + t2

2

)
g(t1 − t2), (11)

where both I and g are Gaussians. It follows at once from Eq. (3) and (11) that the WD of a
GSM source has a separable form of Eq. (10). Thus, realistic statistical pulses belonging to a
wide GSM class have separable WDs. Moreover, the cross-correlation function of any quasi-
stationary source can be well approximated as

Γqs(t1, t2)� I

(
t1 + t2

2

)
γ(t1 − t2), (12)

where I(t) is a “slowly-varying” intensity profile and γ(t) is a “fast” temporal degree of coher-
ence. The WD of such sources are approximately separable as well.

Unfortunately, even if the WD of a source is separable, the WD of generated pulses need
not be so as is seen from Eq. (9). In general, the pulse propagation even in a linear dispersive
medium couples phase-space variables, providing additional impetus for our quest for a phase-
space separability measure. To address this issue, we propose to expand the pulse WD in any
transverse plane into a bi-orthogonal series as

W (T,ω;z) = ∑
n

λn(z)χn(T,z)φn(ω,z), (13)

where the eigenvalues {λn} and eigenfunctions, {χn} and {φn}, are real due to reality of the
WD. It is known [25] that the two sets of eigenfunctions obey the Fredholm integral equations
which, in our case, take the form

λn(z)φn(ω,z) =
∫ ∞

−∞
dT W (T,ω;z)φn(T,z), (14)

and
λn(z)χn(T,z) =

∫ ∞

−∞
dω W (T,ω;z)χn(ω,z). (15)
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The suitably normalized eigenfunctions form an orthonormal set in the sense that
∫ ∞

−∞
dx χn(x,z)φm(x,z) = δnm, x = T,ω. (16)

We note that as the WD may take on negative values, the eigenvalues in the expansion (13)
can be negative as well. The latter circumstance distinguishes Eq. (13) from the conventional
coherent-mode decomposition of the cross-correlation function [26]. Next, one can arrange the
squares of the eigenvalues in decreasing order, λ 2

0 ≥ λ 2
1 ≥ λ 2

2 ≥ . . . . Introducing the reduced
eigenvalues νn(z)’s such that ν2

n = λ 2
n /λ 2

0 ≤ 1, we can define the degree of phase-space sepa-
rability of the pulse by the expression

ρ(z) =
1

∑∞
n=0 ν2

n (z)
. (17)

It follows from the definition that the degree of separability is bound by unity, 0 ≤ ρ(z) ≤ 1,
attaining its maximum if there is only the lowest-order eigenvalue present in the expansion (13).
This corresponds to the ideal case of complete separability of the WD. Thus the proposed
measure conforms to our intuitive perception of the degree of separability.

3. Degree of separability of chirped Gaussian Schell-model (CGSM) pulses

We will now illustrate the introduced concept using a particular example of chirped Gaussian
Schell-model pulses. Not only does the latter serve as a rather representative case, but it en-
ables us to obtain closed-form analytical results. Moreover, we can show explicitly in the case
of CGSM pulses the way to control the WD’s degree of separability. CGSM pulses can be gen-
erated, for example, by transmitting GSM pulses through a time lens which imposes a quadratic
phase chirp on the pulse [21].

The cross-correlation function of CGSM pulses can be written in the form

ΓCGSM(t1, t2) = Γ00 exp

[
− (1− iC)t2

1

2t2
p

− (1+ iC)t2
2

2t2
p

− (t1 − t2)2

2t2
c

]
, (18)

where tp is a characteristic pulse width, tc is a pulse coherence time, C is a dimensionless chirp
parameter, and Γ00 is a normalization constant. Using the definition of WD (3), we can express
the WD of a CGSM pulse as

WCGSM(t,ω) = W00 exp

[
− t2

t2
p

(
1+

C2t2
eff

2t2
p

)
− ω2t2

eff

2
+

Ct2
eff

t2
p

ωt

]
, (19)

where
1

t2
eff

=
1
t2
p
+

1
2t2

c
. (20)

It can be readily inferred from Eq. (19) that because of phase chirping, the WD of a CGSM
source is not separable.

The WD of a pulse generated by a CGSM source can be determined from Eqs. (7) and (19);
the result can be represented as

WCGSM(T,ω;z) = W00 exp

[
−T 2

t2
p

(
1+

C2t2
eff

2t2
p

)
− ω2σ2(z)t2

eff

2
+

C(z)t2
eff

t2
p

ωT

]
. (21)
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Fig. 1. Sketching the behavior of the propagation factor of a CGSM pulse as a function of
dimensionless propagation distance Z = β2z/tp.

Here we introduced the propagation factor σ(z) given by

σ2(z) =

(
1+

Cβ2z
t2
p

)2

+
2β 2

2 z2

t2
pt2

eff

, (22)

and the effective chirp parameter C(z) as

C(z) =C+
β2z
t2
p

(
C2 +

2t2
p

t2
eff

)
. (23)

Eqs. (22) and (23) are generalizations to the case of partially coherent pulses of the corre-
sponding expressions for fully coherent chirped Gaussian pulses [18]. The latter can be recov-
ered from the former by letting teff =

√
2tp which corresponds to tc →∞. The evolution scenario

of σ depends on the sign of Cβ2. If Cβ2 ≥ 0, σ increases monotonously with the propagation
distance. On the other hand, if Cβ2 < 0, the propagation factor attains a minimum,

σmin =

√
2t2

p/t2
eff

C2 +2t2
p/t2

eff

, (24)

at the distance

z∗ =− Ct2
eff/β2

C2 +2t2
p/t2

eff

. (25)

This behavior is qualitatively sketched in Fig. 1. We also note that at z∗ the effective chirp is
equal to zero–the accrued chirp on propagation in the medium unchirps the initial chirp of the
opposite sign imposed by the time lens.

Next, we can conclude by comparing Eqs. (19) and (21) that the WD maintains its Gaussian
shape, with the spectral part and the coupling term–the last term in the exponential function in
Eq. (21)–scaling on propagation. Alternatively, we can work out the cross-correlation function
by taking a Fourier transform of the WD with respect to ω . We arrive, after straightforward
algebra, at the expression

ΓCGSM(s1,s2;z) =
Γ00

σ(z)
exp

[
− (s2

1 + s2
2)

2t2
pσ2(z)

− (s1 − s2)
2

2t2
c σ2(z)

+
iC(z)

2t2
pσ2(z)

(s2
1 − s2

2)

]
. (26)
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It is clear from Eq. (26) that the propagation factor σ governs the dynamics of the pulse width
and coherence time.

To determine the degree of separability, we use the following Mehler’s summation formula
for Hermite polynomials [27]

exp

(
−x2 + y2 −2xyζ

1−ζ 2

)
=
√

1+ζ 2e−x2−y2
∞

∑
n=0

ζ n

2nn!
Hn(x)Hn(y), (27)

where |ζ | ≤ 1. Next, we introduce the scaling factors a(z) and b(z) such that in the scaled
variables T̃ = t/a(z) and ω̃ = ω/b(z), the WD of a CGSM takes the form

WCGSM(T̃ , ω̃;z) = W00 exp

(
− T̃ 2 + ω̃2 −2T̃ ω̃ζ (z)

1−ζ 2(z)

)
. (28)

On comparing Eqs. (28) and (27), we conclude that the WD in the original variables can be
expanded into a bi-orthogonal series (13) with the eigenvalues

λn(z) = W00

√
[1+ζ 2(z)]a(z)b(z)ζ 2n(z), (29)

and the eigenfunctions

χn(T,z) =
1√

2nn!
√

π a(z)
e−T 2/a2(z)Hn

[
T

a(z)

]
, (30)

and

φn(ω,z) =
1√

2nn!
√

π b(z)
e−ω2/b2(z)Hn

[
ω

b(z)

]
. (31)

In Eqs. (30) and (31), the scaling factors are given by the expressions

a(z) =

√
2t4

p/t2
eff

(C2 +2t2
p/t2

eff)[1−ζ 2(z)]
, (32)

and

b(z) =

√
2

σ2(z)[1−ζ 2(z)]t2
eff

, (33)

where

ζ 2(z) =
C2(z)

σ2(z)(C2 +2t2
p/t2

eff)
, (34)

and positive roots are assumed in Eqs. (32) and (33). We note in passing that the bi-orthogonal
decomposition (13) should not be confused with the more familiar coherent-mode expansion
of a GSM source [28,29]. In our case, the eigenfunction sets {χn} and {φn} belong to different
domains which is formally reflected in quite different scaling of a and b with the propagation
distance.

Using Eqs. (34) and (29) in Eq. (17), we can show that the degree of separability turns out to
be given by a remarkably simple expression

ρ(z) = σ2
min/σ2(z). (35)

The analysis of Eq. (35) reveals that the behavior of ρ as a function of the propagation distance
qualitatively depends on the sign of the initial chirp. If C ≥ 0, the degree of phase separability
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Fig. 2. Degree of phase-space separability of a fully coherent CGSM pulse as a function of
dimensionless propagation distance Z = β2z/tp for three values of the initial chirp: C = 0
and C =±1.
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Fig. 3. Degree of phase-space separability of a partially coherent CGSM pulse as a function
of dimensionless propagation distance Z = β2z/tp; solid, tc = ∞, dotted, tc = tp and dashed
tc =

√
2tp/3. The initial chirp is C =−1.

monotonously decreases with the propagation distance. If, on the other hand, C < 0, ρ goes
through a maximum attained at z= z∗. These scenarios are exhibited in Fig. 2 where we present
the behavior of ρ as a function of dimensionless propagation distance in the coherent case
using three values of the chirp, C = 0 and C = ±1 for illustration. The influence of pulse
coherence time on the evolution of ρ is illustrated in Fig. 3 for several values of tc and C =−1.
Interestingly, the WD in the CGSM case becomes separable precisely at the distance where the
pulses are the most compressed and least coherent. Chirping GSM pulses with a time lens then
provides a powerful tool to control pulse coherence and phase-space separability at the same
time.

We stress in conclusion that although quantitative details of the presented decomposition are
specific of the CGSM pulses, qualitatively the results are quite general and entirely independent
of a particular source model. Our findings can be summarized by saying that (i) the introduced
degree of phase-space separability of statistical pulses is intimately related with their propaga-
tion characteristics in linear dispersive media and (ii) initial chirping, e. g., with a time lens,
makes it possible to effectively control the degree of phase-space separability of the pulses.
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