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We theoretically describe ultrashort self-similar pulses propagating in coherent linear absorbers near optical
resonance and propose a method for their experimental realization. © 2012 Optical Society of America
OCIS codes: 030.0030, 320.0320, 320.5550.

Shape-invariant light beams enjoy a special place in op-
tics due to their self-similar structure on paraxial propa-
gation in free space. Several classes of shape-invariant
fully and partially coherent beams, including, notably,
Hermite–Gaussian (HG) ones, are known so far [1,2].
Owing to the space–time duality between evolution of
beams in free space and pulses in optical fibers [3],
similar shape-invariant pulses exist in weakly dispersive
media far away from internal resonances.
Close to an optical resonance, however, one may

expect to see, in general, pronounced pulse reshaping
due to enhanced dispersion there [4]. Yet, we have shown
elsewhere [5] that shape-invariant pulses emerge as uni-
versal intermediate asymptotics on near-resonant pulse
propagation in coherent linear amplifiers as a result
of dynamical balance between amplification and dissipa-
tion processes. Since no such balance is feasible in linear

absorbers, the prospects for self-similarity there are open
to debate.
In this Letter, we show that a broad class of shape-

invariant ultrashort pulses is nevertheless supported by
resonant linear absorbers. We stress that self-similarity
arises here thanks to a particular class of initial spectral
profiles with long wings where much of the incident
pulse energy is stored. We also discuss the potential
for experimental realization of the new pulses in homo-
geneously broadened coherent absorbers and estimate
the necessary pulse and optical media parameters.
We start by examining small-area pulse propagation in

a homogeneously broadened resonant absorber under
the exact resonance condition: the pulse carrier fre-
quency coincides with a resonant transition frequency
of the medium atoms. An atomic vapor in the homoge-
neously broadening regime [1], filling the core of a hol-
low-core photonic crystal fiber (HCPCF) [6] can serve as
a physical realization of the medium. Using the HCPCF,
we can arrest spatial diffraction. Engineering the fiber to
tune its zero group-velocity dispersion frequency to the
gas resonance frequency enables us to eliminate bulk
medium dispersion effects and focus on purely resonant
properties of the system.
In the slowly varying envelope approximation (SVEA),

the pulse field E�z; t� and atomic dipole moment σ�z; t�
can be shown to obey the classical Maxwell–Lorentz
equations [5,7]:

∂ζΩ � iκσ; (1)

∂τσ � −γ⊥σ � iΩ; (2)

which are written in the transformed variables: ζ � z
and τ � t − z∕c. Here we also introduced the field envel-
ope in frequency units, Ω � −eE∕2mωx0, where x0 is
an amplitude of the electron displacement from equili-
brium, the inverse dipole relaxation rate γ⊥ � 1∕T⊥,
where T⊥ is a characteristic dipole moment relaxation
time, and a coupling constant, κ � Ne2∕4ϵ0mc. The
coupled Maxwell–Lorentz equations, Eqs. (1) and (2),
can be solved using a Fourier transform technique, yield-
ing the field envelope at any propagation distance in the
form

E�τ; ζ� �
Z

∞

−∞

dν~E0�ν�e−iντ exp
�
−

αζ
2�1 − iνT⊥�

�
: (3)

Here, α � 2κ∕γ⊥ is a small-signal absorption coefficient
and we introduce the spectral amplitude of the incident
pulse by the expression

~E0�ν� �
Z

∞

−∞

dt
2π E�t; 0�e

iνt: (4)

With an eye on shape-invariant pulse evolution, we
consider the following family of incident pulses:

Es�t; 0� � E0sθ�t��κζ0t�s∕2Js

�
2

���������
κζ0t

p �
e−γ⊥t; (5)

where s is a nonnegative real mode index and θ�t� is a
unit step function, mathematically describing a physical
zero-index pulse with a very short rise time tr . As was
discussed in detail in the amplifier context in [5], the
inequality ω−1 ≪ tr ≪ T⊥ must be respected for the
SVEA to work.

Using the integral representation [8]

Z
∞

0
dxxs�1e−a

2x2Js�bx� �
bs

�2a2�s�1e
−b2∕4a2 ; �6�

and changing the variable of integration, we can obtain
the pulse spectral amplitude in the source plane as

~E0s�ν� �
~Ems

�1 − iνT⊥�s�1 exp
�
−
αζ0
2

�
iνT⊥

1 − iνT⊥

��
: (7)
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Here we introduce the peak spectral amplitude ~Ems as

~Ems �
E0sT⊥

2π

�αζ0
2

�
s
e−αζ0∕2; (8)

which links ζ0 to the other pulse parameters. Next, on
comparing the Fourier decomposition of the incident
pulse,

Es�t; 0� �
Z

∞

−∞

dν~Es0�ν�e−iνt; (9)

with that at any ζ ≥ 0—see Eq. (3)—and using Eq. (7), we
infer by inspection that the examined pulse [Eq. (5)]
indeed remains self-similar on propagation in the reso-
nant medium with the pulse profile given by

Es�τ; ζ� �
E0sθ�τ�

�1� ζ∕ζ0�s
ηs∕2Js

�
2

���ηp �
e−γ⊥τ: (10)

Here, the similarity variable η is defined as η �
κ�ζ � ζ0�τ. Hereafter, we will refer to fEsg as a set of re-
sonant linear absorber modes. Note that the new mode
index s need not be an integer, which sets the discovered
modes apart from, for instance, familiar HG ones encoun-
tered in the laser resonator theory [1].
Next, over sufficiently long propagation distances,

ζ ≫ ζ0, the pulse shape is independent of its initial
rms width, Es�τ; ζ� ∝ θ�τ��κτ∕ζ�s∕2Js�2

�������
κζτ

p �e−γ⊥τ. Hence,
the rms width of the pulse must be independent of ζ0 in
the long-term limit as well, a feature that further distin-
guishes novel modes from the HG ones. The rms pulse
width of the zero-index mode is exhibited in Fig. 1 as
a function of the propagation distance for different initial
conditions in the dimensionless variables: T � τ∕T⊥,
Z � αζ, and Z0 � αζ0.
It follows at once from Eqs. (3) and (7) that the

spectrum of the shape-invariant pulse of index s can
be represented as

Ss�ω; Z� �
S0

�1� ω2�s�1 exp
�
−
Z � Z0

1� ω2

�
: (11)

The spectral profile of the zero-index mode is shown
in Fig. 2—the other mode spectra look qualitatively

similar—as a function of dimensionless frequency
ω � νT⊥ for Z0 � 0.5 and Z0 � 7. As is seen in the figure,
the spectrum evolution scenario is determined by the in-
terplay of resonant dispersion and absorption and it
strongly depends on the magnitude of Z0. For sufficiently
small Z0—see Fig. 2(a)—the initial spectrum has a cen-
tral peak. A hole is then burnt at the center of the pulse
spectrum on propagation over a fraction of a character-
istic absorption length. This is followed by spectral hole
broadening as the energy is being steadily transferred to-
ward the pulse wings and the pulse evolution becomes
self-similar. A source with a greater Z0 may already have
a spectral hole–as is illustrated in Fig. 2(b)—resulting in
shape-invariant pulse propagation from the outset. To ex-
hibit self-similarity in the time domain, we also display
the zero-mode pulse evolution in the insets in Fig. 2.

The required pulse profile to generate self-similarity
can be synthesized by exploring Eq. (7). It follows from
Eq. (7) that the desired spectral shape consists of an
atomic absorption profile—the Lorentzian prefactor–
and a complex modulation factor, H�ν� � �1� ν2T2

⊥
�−s

exp�−αζ0∕�1 − iνT⊥��. The amplitude and phase of the
latter are sketched in Fig. 3 as functions of ω.

Next, to generate the overall spectrum, one may first
invert an atomic ensemble in a source gas cell with an
ultrashort π pulse, say. The excited atoms will then emit
a homogeneously broadened pulse of Lorentzian spectral
shape, which may, in turn, be spectrally filtered with the
filter function H�ν� using, for example, one of the tech-
niques reviewed in [9].

Further, we briefly discuss the required material para-
meters to realize the discussed pulses. First, the collision-
induced spectral width δνc—assuming dipole relaxation
is mainly due to collisions, T⊥ ∼ δν−1c —must be much
greater than the Doppler-induced inhomogeneous broad-
ening width δνD. To attain the homogeneous broadening
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Fig. 1. Root-mean-square width of the zero-index pulse as a
function of Z for three values of Z0.

Fig. 2. Pulse spectrum of the zero-index mode (in arbitrary
units) as a function of dimensionless frequency ω and propaga-
tion distance Z for (a) Z0 � 0.5 and (b) Z0 � 7. Insets: zero-
index pulse intensity profile as a function of dimensionless time
T ; Z � 70, (dotted curve) and Z � 100 (solid curve).

Fig. 3. Left: the filter phase (solid) and the real part of the
refractive index (dashed). Right: the filter amplitude (solid)
and the imaginary part of the refractive index (dashed).
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regime, δνc ≫ δνD, one can either collimate the gas beam
or increase the gas pressure [1]. Taking the gas density to
be N ∼ 1015 cm−3

—which is, at least, 3 orders of magni-
tude beyond the usual dilute vapor range [7]—and
assuming T⊥ ∼ 10−12 s for such a dense vapor, we esti-
mate the linear absorption length LA � α−1 ≃ 0.2 mm.
Thus, the self-similar pulse propagation regime can be
observable in a few-meters-long HCPCF.
Finally, let us estimate the required input pulse energy

density, W � �ϵ0c∕2�
R
∞
−∞ dtjEj2 � πϵ0c

R
∞
−∞ dνj~Ej2. Using

the peak spectral amplitude of the input pulse, the energy
density can be roughly estimated as ~E2

msΔν, where the
spectral width (FWHM) is Δν ∼ T−1

⊥
. The peak spectral

amplitude can, in turn, be estimated using the pulse area,
A � �2d∕�h� R∞

−∞ dtE � 2π~Em. In the small-area regime,
say,A ∼ 0.1, we arrive atW ≃ 10 nJ∕cm2, where we used
d ∼ ea0 ∼ 10−29 C m as a reasonably good estimate for the

dipole moment magnitude in optical transitions [7]. Thus,
the proposed self-similar pulses can be realized with
picosecond pulse sources of just 10 nJ∕cm2 energy.
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