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1. Introduction

The growing interest in the ultrafast optical communication systems [1] has motivated the recent
surge of activity in the field of ultrafast statistical optics [2–12]. The progress was initiated by
the pioneering work [2, 3] that extended the optical coherence theory of statistically stationary
fields [13] to the non-stationary case.

To date, a good deal of attention has been paid to modeling realistic partially coherent
sources [4, 5], the search for an adequate definition of statistical pulse spectrum [6] and for
a measurable theory of random pulses [7] as well as the advancement of various statistical rep-
resentations thereof [8–10]. Propagation properties of statistical pulses–especially the ones that
maintain their temporal profile on propagation–have also been explored in linear [11,12,14] and
nonlinear [15] dispersive media far from internal resonances. Although shape-invariant propa-
gation of fully coherent ultrashort pulses in linear amplifiers and absorbers in the vicinity of an
optical resonance has been recently examined [16, 17], the influence of statistical properties on
pulse evolution has not yet been explored in the resonant case.

The objective of this work is to present explicit classes of partially coherent pulses that
propagate in resonant linear absorbers without changing their shape. We show how such pulses
can be constructed from the previously discovered shape-invariant modes of resonant absorbers
by extending the coherent-mode representation of optical coherence theory [18] to the case of
statistical pulses in a manner similar to [19].

2. Partially coherent self-similar pulses in coherent linear absorbers

To set the stage, we examine small-area statistical pulse propagation in a homogeneously broad-
ened resonant absorber under exact resonance condition: the pulse carrier frequency coincides
with a resonant transition frequency of the medium atoms. A dilute atomic vapor filling a high-
vacuum cell can serve as a physical realization of the medium. To eliminate inhomogeneous
broadening, we assume the atomic velocities to be well collimated orthogonally to the input
laser beam such that no Doppler broadening takes place.

To illustrate a typical experimental situation, we consider a dilute sodium vapor with the
density N ∼ 1011 cm−3 at room temperature at the pressure of P = 0.1 Torr, say. One can then
estimate a characteristic spectral width due to collision broadening as δνc ∼ 103 MHz [20].
Assuming further that dipole relaxation is mainly due to collisions, we can estimate a typical
dipole relaxation time, T⊥ ∼ δν−1

c ∼ 10−9 s. It follows that the linear absorption length of this
system can be estimated as LA = α−1 � 2 mm, where α = NT⊥e2/2ε0mc is a small-signal
absorption coefficient. Thus, the proposed self-similar pulses can be realized with nanosecond
small-area input pulses in a few-centimeter long cell filled with the homogeneously broadened
dilute vapor.

Next, we recall that the system supports a class of fully coherent shape-invariant modes; the
spectral profile of each mode is given by [17]

Ẽs(ω,ζ ) ∝
(αζ0/2)s

(1− iωT⊥)s+1 exp

[
− α(ζ +ζ0)

2(1− iωT⊥)

]
. (1)

Here α is a small-signal inverse absorption length, T⊥ is an individual dipole relaxation time,
and ζ0 determines the spectral mode profile at the source. Introducing dimensionless variables
Ω = ωT⊥ and Z = αζ and restricting ourselves to the integer index modes (s = n), we can
rewrite the spectral field amplitude of each shape-invariant mode in the form

Ẽn(Ω,Z) ∝
(Z0/2)n

(1− iΩ)n+1 exp

[
− Z+Z0

2(1− iΩ)

]
. (2)
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Fig. 1. Spectral amplitude of the pulse with the power-law modal weight distribution in
arbitrary units. The parameters are (a) λ = 0.1, Z0 = 5; (b) λ = 0.3, Z0 = 3, and (c) λ = 10,
Z0 = 0.1.

Any partially coherent shape-invariant pulse can be expressed as a linear superposition of
shape-invariant modes with random coefficients as

Ẽ (Ω,Z) =
∞

∑
n=0

CnẼn(Ω,Z). (3)

In Eq. (3), the coefficients determine the statistics of the source viz.,

〈C∗
nCm〉= λnδmn, (4)

where λn ≥ 0 and the angle brackets indicate ensemble averaging. The second-order statistical
properties of pulses in the spectral domain are described by the cross-spectral density distribu-
tion defined as

W (Ω1,Ω2,Z) = 〈Ẽ ∗(Ω1,Z)Ẽ (Ω2,Z)〉. (5)

It follows from Eqs. (4) and (5) that the cross-spectral density can then be expressed as a
Mercer-type series in the form [18]

W (Ω1,Ω2,Z) =
∞

∑
n=0

λnẼ
∗
n (Ω1,Z)Ẽn(Ω2,Z). (6)

Although a multitude of partially coherent shape-invariant pulses can be represented by the
expansion (6), closed-form results can only be obtained for a few classes of pulses. In the
following sections we consider two such cases.

3. Pulses with the power-law distribution of modal weights

First, assume the modal weights {λn}’s have a power distribution:

λn = A λ 2n, (7)

where A > 0 is a normalization constant specifying the overall intensity of a partially coherent
pulse, and λ ≥ 0. It follows at once from Eqs. (2), (6), and (7) that the spectrum of the pulse,
defined as S(Ω,Z)≡W (Ω,Ω,Z) [6], is

S(Ω,Z) =
A

(1−λ 2Z2
0/4)+Ω2

exp

[
− Z+Z0

1+Ω2

]
. (8)
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Fig. 2. Modulus of the spectral degree of coherence. The parameters are (a) λ = 0.1, Z0 = 5
and (b) λ = 10, Z0 = 0.1.

Fig. 3. Modulus of the spectral degree of coherence as a function of Ω1 for a fixed Ω2: (a)
Ω2 =−15, (b) Ω2 = 0.

Equation (8) corresponds to a physical pulse spectrum only if the constraint 0 ≤ λ < 2/Z0 is
imposed. The latter is rather stringent as it stipulates that λ be fairly small for sufficiently large
Z0. Notice also that the spectrum (8) has the shape reminiscent of the zero-index mode spectrum
|Ẽ0(Ω,Z)|2 of Ref. [17], though its peak amplitude is scaled by the factor of (1−λ 2Z2

0/4)−1.
Further analysis reveals that the shape of the pulse spectrum depends on the magnitude of

two parameters: λ and Z0. In particular, the pulse spectrum at the source can have either a hole,
or a dip, or else a peak at the center, depending on λ and Z0. The situation is illustrated in
Fig. 1 where the pulse spectrum evolution is displayed for three sets of parameters: (a) λ = 0.1,
Z0 = 5; (b) λ = 0.3, Z0 = 3, and (c) λ = 10, Z0 = 0.1. As is seen in Fig. 1(a), the spectrum with
a hole at the center propagates in a self-similar fashion from the outset. Whenever there is only
a dip at the center of the incident pulse–as is shown in Fig. 1(b)–the dip deepens on propagation
until a hole is burnt at the center and the pulse enters its self-similar evolution stage. If, on the
other hand, the spectrum has a central peak (see Fig. 1(c)), the latter eventually transforms into
a hole with the subsequent self-similar pulse evolution.

Coherence properties of the pulse are described by the spectral degree of coherence defined
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as [18]

μ(Ω1,Ω2,Z) =
W (Ω1,Ω2,Z)√

S(Ω1,Z)
√

S(Ω2,Z)
. (9)

The latter can be worked out analytically, but the resulting expression is rather cumbersome.
Instead, we exhibit the magnitude of the spectral degree of coherence in the source plane in
Fig. 2 for two sets of parameters: (a) λ = 0.1, Z0 = 5 and (b) λ = 10, Z0 = 0.1. As is seen in
the figure, the spectral coherence properties of the pulses are nonuniform and dependent on the
values of parameters. To illustrate these points, we display in Fig. 3 |μ | as a function of Ω1,
say, for fixed Ω2. It is seen in the figure that the degree of coherence can have a local maximum
or minimum at the center, Ω1 = 0, depending on the position of the other spectral point. The
magnitudes of the maxima and minima depend on the values of the other parameters.

4. Pulses with modal weight distributions decaying faster than the power-law

Next, we examine the following modal weight distribution,

λn = B
λ 2n

(n!)2 , (10)

B being a positive normalization constant. It can be inferred from Eqs. (2), (6), and (10) using
the representation for the zero-order modified Bessel function [21],

I0(x) =
∞

∑
n=0

(x/2)2n

(n!)2 , (11)

that the partially coherent pulse spectrum in the case takes the form

S(Ω,Z) =
B

1+Ω2 I0

(
λZ0√
1+Ω2

)
exp

[
− Z+Z0

1+Ω2

]
. (12)

We conclude by examining Eq. (12) that provided λ < 1, the spectral hole or dip presence at
the pulse center in the source plane depends on the values of λ and Z0. However, unlike in the
previously considered case, if λ > 1, there can be no spectral hole at the source.

We illustrate these observations by exhibiting the pulse spectrum of Eq. (12) in Fig. 4 for
four sets of parameters: (a) λ = 0.9, Z0 = 0.1; (b) λ = 0.9, Z0 = 15; (c) λ = 2, Z0 = 0.1,
and (d) λ = 2, Z0 = 15. It is seen by comparing Figs. 4(a) and 4(c) that for sufficiently small
Z0 = 0.1, there is a peak at the center in the source plane in both figures. At the same time, as
Z0 increases to 15, say, a hole is formed at the center for λ = 0.9 < 1 as is seen in Fig. 4(b). Yet,
the pulse spectrum has a peak at the center for λ = 2 > 1 as shown in Fig. 4(d). Our numerical
simulations indicate that no matter how close the value of λ approaches unity from the above,
only a dip but not a hole can be formed at the center of the pulse spectrum.

In Fig. 5, we also present the corresponding spectral degree of coherence in the source plane
for Z0 = 15 with λ = 0.9 (left) and λ = 2 (right). Note that there is no constraint on the mag-
nitude of λ in Eq. (12) which makes this class of pulses wider than the previously considered
one. On comparing Fig. 2 and Fig. 5, we observe that first, the spectral degree of coherence is
rotationally symmetric in the former figure while the rotational symmetry is broken in the lat-
ter. Second, we notice that the quantitative dependence of |μ | on the parameters is stronger for
the second class of pulses than is for the first. To bring these points home, we exhibit in Fig. 6
the cross-sectional plot of |μ | for a couple fixed values of one of the frequencies, Ω2 = −15
in Fig. 6(a) and Ω2 = 0, in Fig. 6(b). On comparing Figs. 3 and 6, we can see that not only
does the qualitative behavior of |μ | richer in Fig. 6, but pulse coherence properties can be tuned
within a wider range for the second class of pulses than for the first one.
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Fig. 4. Spectral amplitude of the pulse with λn ∝ λ 2n/(n!)2 in arbitrary units. The param-
eters are (a) λ = 0.9, Z0 = 0.1; (b) λ = 0.9, Z0 = 15; (c) λ = 2, Z0 = 0.1, and (d) λ = 2,
Z0 = 15.

Fig. 5. Modulus of the spectral degree of coherence. The parameters are (a) λ = 0.9, Z0 =
15 and (b) λ = 2, Z0 = 15.

Fig. 6. Modulus of the spectral degree of coherence as a function of Ω1 for a fixed Ω2: (a)
Ω2 =−15, (b) Ω2 = 0.

In conclusion, we have theoretically described several classes of partially coherent self-
similar pulses. We found closed form expressions for two-time correlation functions fully de-
scribing second-order statistical properties of the pulses. We also explored coherence properties
of the new pulses and shown that, in general, the pulse coherence properties are highly nonuni-
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form across the their temporal profiles. The spectral profiles of the new pulses may have a
spectral hole or a dip which can affect their short-distance evolution; however the long-term
evolution is self-similar in either case.
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