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We derive a complex area correlation theorem describing global second-order statistical properties of pulses propa-
gating in coherent linear absorbers. We also illustrate temporal evolution of a generic partially coherent pulse in a
coherent linear absorber bydiscussing the behavior of its temporal intensity profile anddegree of coherence. © 2012
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OCIS codes: 030.0030, 320.0320, 320.5550.

As statistical properties of ultrashort pulses impose
ultimate limits on the performance and accuracy of the
state-of-art fiber-optical communication systems [1],
there has been acute interest in exploring the evolution
of statistical pulses in a variety of dispersive media that
can serve as conduits for optical communications. In this
context, the dynamics of partially coherent pulses in gen-
eric, weakly dispersive linear media was explored [2,3].
More specifically, coherence and polarization properties
of such pulses were discussed on their propagation in op-
tical fibers [4,5], and statistical properties of certain
classes of partially coherent pulses propagating in linear
and nonlinear dispersive media were examined and
characterized in novel ways [6,7].
More recently, the interest has arisen to statistical

pulse propagation in resonant media. In particular, it was
demonstrated that any asymmetric pulse with a sharp
leading edge evolves toward a universal self-similar
asymptotic shape on propagation in coherent linear am-
plifiers near optical resonance [8]. In coherent linear ab-
sorbers, on the other hand, self-similarity can be
generated only for specific–although rather wide–classes
of input coherent [9] and partially coherent [10] pulses.
The research to date, however, leaves unexplored the
propagation properties of generic partially coherent
pulses in resonant linear absorbers and amplifiers.
In this Letter, we examine global and local statistical

properties of generic ultrashort pulses propagating in lin-
ear absorbers in a resonant regime. We demonstrate the
existence of a novel theorem, the area correlation theo-
rem, which governs the universal behavior of complex
area correlations of any statistical pulse on propagation
in a resonant linear absorber. We explain the physical sig-
nificance of the theorem and relate it to the (generalized)
area theorem known to determine the dynamics of co-
herent pulse area in such media. We also discuss the tem-
poral intensity profile and degree of coherence evolution
for Gaussian Schell-model pulses in coherent linear
absorbers.
To begin, we examine small-area pulse propagation

in a coherent absorber under near resonance condition:
the pulse carrier frequency ωc is tuned closely to a
resonant transition frequency ω0 of the medium atoms.
In the slowly-varying envelope approximation (SVEA),
the pulse field E�z; t� and atomic dipole moment σ�z; t�

can be shown to obey the classical Maxwell–Lorentz
equations (MLE) [8,11]

∂ζΩ � iκhσiΔ; (1)

and

∂τσ � −�γ⊥ � iΔ�σ � iΩ; (2)

which are written in the transformed variables: ζ � z and
τ � t − z ∕ c. Here Δ � ωc − ω0 is a detuning of the pulse
carrier frequency from resonance and the angle brackets
with the subscript “Δ” denote averaging over the fre-
quency detuning distribution g�Δ�, defined as

hσiΔ �
Z

∞

−∞

dΔσ�τ; ζ;Δ�g�Δ�: (3)

In Eqs. (1) and (2) we introduced the field envelope in
frequency units, Ω � −eE ∕ 2mωx0, where x0 is an ampli-
tude of the electron displacement from equilibrium, the
inverse dipole relaxation rate γ⊥ � 1 ∕T⊥, where T⊥ is a
characteristic dipole moment relaxation time, and a
coupling constant, κ � Ne2 ∕ 4ϵ0mc. The coupled MLE
can be solved using a Fourier transform technique, yield-
ing the field envelope at any propagation distance in the
form

E�τ; ζ� �
Z

∞

−∞

dω ~E0�ω� exp�−iωτ − κR�ω�ζ�: (4)

Here the spectral response function of the mediumR and
the spectral amplitude of the incident pulse are defined
as

R�ω� �
�

1
γ⊥ � i�Δ − ω�

�
Δ
: (5)

and

~E0�ω� �
Z

∞

−∞

dt
2π

E�t; 0�eiωt; (6)

respectively.
Let us now consider an ensemble of statistical realiza-

tions of pulses fE�τ; ζ�g. The second-order statistical
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properties of the ensemble are, in general, characterized
by the two-time, two-distance correlation function,
defined as

Γ�τ1; ζ1; τ2; ζ2� � hE��τ1; ζ1�E�τ2; ζ2�i: (7)

Here the angle brackets without subscripts denote pulse
ensemble averaging. It follows at once from Eqs. (4) and
(7) that

Γ�τ1; ζ1; τ2; ζ2� �
Z

∞

−∞

dω1

Z
∞

−∞

dω2W 0�ω1;ω2�

× ei�ω1τ1−ω2τ2� expf−κ�R��ω1�ζ1 �R�ω2�ζ2�g; (8)

where W0�ω1;ω2� is the cross-spectral density at the
source given by

W0�ω1;ω2� � h ~E�
0�ω1� ~E0�ω2�i: (9)

Next, we introduce a complex area of a statistical
pulse by the expression

A�ζ�≡
Z

∞

−∞

dτE�τ; ζ�: (10)

Equation (10) is a generalization of the conventional real
area under unchirped pulse—see [11]—to the case when
a statistical pulse is chirped at the source; of course, the
complex area does lose a direct geometrical interpreta-
tion as the area under the pulse temporal profile. More-
over, A pertains to a member of the statistical ensemble.
Hence, it is a random function of the propagation
distance. One can then introduce the area correlation
function viz.,

CA�ζ1; ζ2�≡ hA��ζ1�A�ζ2�i

�
Z

∞

−∞

dτ1

Z
∞

−∞

dτ2Γ�τ1; ζ1; τ2; ζ2�: (11)

Further, on taking the double time integration on both
sides of Eq. (8), employing the area correlation definition
(11) and the integral representation of the delta function,

δ�ω� �
Z

∞

−∞

dt
2π

eiωt; (12)

we arrive at

CA�ζ1; ζ2� � CA0 expf−κ�R��0�ζ1 �R�0�ζ2�g; (13)

where CA0 � CA�0; 0�. Equation (13) can be transformed,
with the aid of Eq. (5), to the final form of the correlation
area theorem as

CA�ζ1; ζ2� � CA0e−α�ζ1�ζ2�eiβ�ζ2−ζ1�; (14)

where we introduced a small-signal absorption coeffi-
cient α and the phase accumulation factor β by the
expressions

α �
�

2κγ⊥
γ2
⊥
�Δ2

�
Δ
; (15)

and

β �
�

2κΔ
γ2
⊥
�Δ2

�
Δ
: (16)

Equation (14) is the key result of this Letter. It tells us
that due to absorption, the area correlations of a statis-
tical pulse exponentially decay on propagation into the
coherent linear absorber, regardless of a specific tempor-
al profile of the pulse at the source. Notice that in the
same transverse plane, ζ1 � ζ2, the area correlation
function does not pick up any additional phase on
propagation–it simply exponentially decays with the pro-
pagation distance ζ. We also notice that in the fully co-
herent limit, the area correlation function factorizes and
the derived area correlation theorem reduces to

A�ζ� � A0e−αζeiβζ; (17)

which is a generalized area theorem for coherent pulses.
The generalization entails the extension of the area con-
cept of [11] to chirped pulses, thereby allowing for a com-
plex area. The presence of the phase factor on the r. h. s.
of Eq. (17) is a consequence of pulse chirping by the med-
ium; in the form (14)–or (17) for fully coherent pulses–
the classical area theorem applies to chirped small-area
pulses as well.

To study local properties of statistical pulses on their
propagation in resonant linear absorbers, we must spe-
cialize to a particular pulse model. In this work, we con-
sider a Gaussian Schell-model (GSM) statistical pulse as
a rather representative case. The cross-spectral density
of a GSM pulse can be expressed as [12]

W 0�ω1;ω2� ∝ exp
�
−
�ω1 − ω2�2t2p

2

�
exp

�
−
�ω1 � ω2�2t2eff

8

�
;

(18)

where

1

t2eff
� 1

t2c
� 1

4t2p
; (19)

tp and tc being the characteristic pulse width and coher-
ence time, respectively. To proceed further we need to
specify g�Δ�. Any choice will depend on the physical nat-
ure of inhomogeneous broadening. To examine a generic
case, we choose g�Δ� to be a (normalized) Lorenzian
function,

g�Δ� � 1
π

1 ∕TΔ
Δ2 � 1 ∕T2

Δ
; (20)

where TΔ is a characteristic damping time associated
with inhomogeneous broadening. This choice ensures
that the spectral response function can be determined
in the explicit form as [11]
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RL�ω� �
1

1 ∕Teff � i�Δ − ω� : (21)

Here T−1
eff � T−1

⊥
� T−1

Δ is the effective damping time.
We numerically explore the behavior of the GSM pulse

intensity profile, I�τ; ζ� � Γ�τ; ζ; τ; ζ�, on propagation in
the absorber. To this end, we transform to dimensionless
variables, T � t ∕Teff , Z � αζ, and measure the intensity
in arbitrary units (a.u). The pulse coherence state will
affect its intensity evolution in the resonant absorber
whenever tc ∼ Teff . It follows from Eqs. (18) and (19) that
the inverse of min�tc; tp� plays the role of the effective
input pulse bandwidth. In this connection, we can
distinguish two characteristic cases: very “short”,
min�tc; tp� ≪ Teff , and very “long”, min�tc; tp� ≫ Teff ,
pulses.
In Fig. 1 we present the evolution of the GSM pulse

intensity profile as a function of Z for (a) very short,
tc � Teff � 5tp, and (b) very long, tc � Teff � tp ∕ 5,
pulses. It is seen in the figure that the short pulse, which
has a broad spectrum as compared with the spectral am-
plitude RL�ω� of the absorbing medium, is strongly ab-
sorbed and reshaped, transferring its remaining energy
toward its tails. The long pulse, on the other hand, keeps
its shape almost intact, but its peak intensity decays on
propagation.
Next, we exhibit in Figs. 2 and 3 the evolution of the

magnitude of the temporal degree of coherence, defined
as

γ�τ1; ζ; τ2; ζ�≡
Γ�τ1; ζ; τ2; ζ�������������������������������
I�τ1; ζ�I�τ2; ζ�

p ; �22�

for relatively long and rather short pulses, respectively. It
is seen in the figures that while the degree of coherence
of a long pulse is rather weakly affected by the absorbing
medium, the coherence state of the short one becomes
progressively more inhomogeneous across the pulse pro-
file such that jγj oscillates rapidly between zero and
unity. This profound coherence state evolution testifies
to a strong coherent coupling of short—and hence spec-
trally broad—statistical pulses with the resonant absor-
ber atoms.
In summary, we studied global and local correlation

properties of statistical pulses propagating in linear

absorbing media in the near resonance regime. We have
derived a correlation area theorem describing the univer-
sal behavior of global correlation properties of the pulse
propagating in the medium. We also examined the evolu-
tion of intensity profiles and temporal degrees of coher-
ence of Gaussian Schell-model pulses in coherent linear
absorbers. We have shown that the intensity profiles and
degrees of coherence of short GSM pulses are strongly
affected by the medium due to their efficient coupling
to the absorbing atoms.
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Fig. 1. GSM pulse intensity profile. The pulse parameters are
(a) tc � Teff � 5tp and (b) tc � Teff � tp ∕ 5.

Fig. 2. (Color online) Magnitude of the temporal degree of
coherence of a relatively long GSM pulse at (a) Z � 1 and
(b) Z � 50. The pulse parameters are tc � Teff � tp ∕ 5.

Fig. 3. (Color online) Magnitude of the temporal degree of
coherence of a rather short GSM pulse at (a) Z � 1 and
(b) Z � 50. The pulse parameters are tc � Teff � 5tp.
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