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We discover and numerically describe optical shock wave formation in inhomogeneously broadened

resonant nonlinear media. Our results extend our previous work to the case of inhomogeneously

broadened two-level media. We also describe in detail the atomic variable behavior as the optical

shocks form in the medium.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

Shock waves have been discovered in a variety of physical
systems, including fluids and gases [1,2]. In general, shock waves
are generated by sudden and violent changes in pressure, density,
and/or temperature. In most fluid systems, the energy of shocks
dissipates due to the viscous damping in the medium through
which it travels. However, systems such as cold plasmas [3,4],
superfluids and Bose–Einstein condensates [5–8], where the
viscosity and damping effects are negligible, support dispersive
shock waves.

Shock waves in optics have also been examined by invoking
the analogy between superfluid and nonlinear optical wave
behaviors [9,10]. The analogy has been explored in Ref. [11] to
explain the observed behavior of dispersive optical shocks –
which are the optical equivalent of condensate shock waves – in
the spatial domain. Dispersive optical shocks have also been
observed in the temporal domain using ultrashort pulses in
optical fibers [12–15].

At the same time, much less attention has been devoted to
optical shocks in resonant nonlinear media. Nevertheless, we
have shown elsewhere [16] that in homogeneously broadened
resonant nonlinear absorbers, optical shocks are formed as inter-
mediate self-similar asymptotics of any incident pulse with a long
tail in the trailing edge. In particular, such shocks can be
generated in solids, doped with resonant impurities, and bulk
semiconductors, doped with quantum dots. However, in the
systems we discussed in Ref. [16], the inhomogeneous broadening
ll rights reserved.
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plays an important role in shaping the input pulse and hence it
cannot be really ignored.

In this paper, we explore the possibility of shock-like pulse
formation in resonant nonlinear media in the presence of inho-
mogeneous broadening. We show that similar to our previous
work [16], the interplay between the optical nonlinearity and the
transverse relaxation processes – which are responsible for the
temporal width of the shocks – cause self-steepening of the input
pulse and shock formation. On the other hand, the longitudinal
relaxation processes lead to decay and eventual disappearance of
the shocks. We stress that the discovered optical shocks form in
the pulse envelope, with their characteristic width being deter-
mined by the dipole relaxation time. The latter is much longer
than an optical cycle, thereby justifying the use of the slowly
varying envelope approximation.
2. Mathematical preliminaries and physical model

We model the resonant medium as a two-level system with
the resonance frequency o0. We assume that the transverse
(dipole) relaxation time T? is much shorter than the longitudinal
(energy) one, TJ, yet much longer than an optical cycle

o�1
0 5T?5TJ: ð1Þ

The inequality (1) implies that the atomic dipole moments evolve
much faster than the atomic population dynamics unfolds. By this
assumption, the shocks are formed by atomic dipole evolution
over a much shorter distance than that over which energy
dissipation takes its toll. We consider solids, doped with resonant
atoms [17], or bulk semiconductors, doped with quantum dots
[18] as particular realizations of the system. The characteristic
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Fig. 1. Dimensionless Rabi frequency O of a forming shock as a function of

dimensionless time, T, and propagation distance Z. The ratio of transverse to

longitudinal relaxation times is T?=TJ ¼ 10�7. The initial parameters are

O0 ¼ 1:5g? , and tp ¼ 100T?.
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transverse and longitudinal relaxation times for solids doped with
resonant atom impurities, fall into the ranges 10�6rTJr10�3

and 10�13rT?r10�11 s [19], respectively, implying 105r
TJ=T?r1010. Also, relaxation times for bulk semiconductors
doped with quantum dots range as follows: 10�12rTJr10�4

and 10�13rT?r10�12 s [19] such that 1rTJ=T?r109. There-
fore, our results are applicable to many physical systems, includ-
ing all solids and some semiconductor systems.

We consider a light pulse with a carrier frequency o near the
optical resonance frequency o0 of a two-level atom medium. We
also assume that the pulse spectrum is mainly affected by
inhomogeneous broadening. Under these conditions, the slowly
varying field envelope of the pulse in terms of the transformed
coordinate and time, z¼ z and t¼ t�z=c, obeys the reduced wave
equation

@O
@z
¼
oN9deg9

2

cE0_
/sS: ð2Þ

Here O¼ 2degE=_ is the Rabi frequency associated with the pulse
amplitude E, N is a density of impurity atoms, deg is a dipole
matrix element between the ground and excited states of any
atom; the two relevant atomic states are appropriately labeled
with the indices g and e, and s is a dipole envelope function of
atomic dipole moment. The average over a distribution of fre-
quency detunings from atomic resonances, D¼o�o0, is defined
as

/sS�
Z

dDgðDÞsðDÞ: ð3Þ

In this work, we assume the inhomogeneous broadening distribu-
tion to be a generic Gaussian function in the form

gðDÞ ¼
1ffiffiffiffiffiffi
2p
p

d
exp �

D2

2d2

 !
, ð4Þ

where d is a spectral width of inhomogeneous broadening. The
quantum dipole moment s¼ u�iv and inversion w envelope
functions obey the Bloch equations which can be written as [17]

@ts¼�ðg?þ iDÞs�iOw, ð5Þ

@tw¼�gJðw�weqÞ�
i

2
ðOns�OsnÞ: ð6Þ

Here g? and gJ are defined as the corresponding inverse
transverse relaxation time and energy relaxation time, T? and
TJ, respectively. Since a constant background intensity at the
trailing edge of the input wave is required to produce a shock, we
then consider as an initial condition, a Q-switched laser input of
the form

Oð0,tÞ ¼
O0

1þe�t=tp
, ð7Þ

where O0 is the amplitude – measured in frequency units – of the
cw laser field and tp is a characteristic time constant of the
switching process. Hereafter, it will prove convenient to introduce
dimensionless variables as T ¼ g?t, Z ¼ az; a¼ kN9deg9

2
=
ffiffiffiffiffiffi
2p
p

E0d_,
being a linear absorption coefficient, O ¼O=g?, D ¼D=g?, and
recast Eqs. (2)–(7).
3. Numerical simulations

We then numerically solve Eq. (2), together with the Bloch Eqs.
(5) and (6), subject to the initial condition (7). The simulations
reveal the existence of a shock-like solution for the Rabi fre-
quency. In Fig. 1, we show shock formation for sufficiently long
energy relaxation times, TJ=T? ¼ 107, and the other parameters
such that d¼ 1012 s�1, and T? ¼ 10�13 s. A fast self-steepening
stage results in the steady-state shock formation. It can be
inferred from the figure that the shock structure, which is
determined by the magnitude of the Rabi frequency jump O0,
becomes steep as it propagates in the medium.

Our numerical simulations show that to form a shock, O0 may
not be less than a certain critical value Oc , which depends on the
magnitude of gJ. The presence of a critical power threshold for
shock formation is necessary because the incident wave should
have enough power to overcome energy losses due to long-
itudinal relaxation processes. In our case, TJ=T? ¼ 107, the critical
amplitude is found to be Oc ¼ 7� 106gJC7� 1012 s�1. Translat-
ing this to real life units, we can estimate the critical intensity
required to form a shock, Ic ¼ E0nc_2O2

c =8d2
eg . Estimating the

dipole moment of a typical impurity atom in a solid to be
deg C2� 10�29 C m [17] and the refractive index of a bulk solid
material as nC2, we arrive at a rough estimate Ic C10 MW=cm2,
which is an order-of-magnitude below the optical breakdown
intensity of a typical solid [20]. One would then have to use high
power Q-switched lasers to generate the proposed optical shocks.

To better understand shock formation and to elucidate the role
of inhomogeneous broadening, the time evolution of the atomic
variables, u, v, and w is displayed in Fig. 2 for several values of D.
First, we observe that at a fixed Z, w evolution mimics that of the
shock amplitude. The reason being that at the leading edge of the
shock – where its amplitude is low – no atom inversion takes
place and w remains close to its initial value, w0 ¼�1. On the
other hand, a large shock amplitude at the trailing edge saturates
the medium implying that w1 ¼ 0. By the same token, the
absorptive component v of the atomic dipole moment peaks only
at the trailing edge of the w profile where there is a substantial
probability – roughly a half – to find an impurity atom in its
excited state. Although the behavior of v is independent of the
sign of D, its peak amplitude strongly depends on the detuning:
the magnitude of the peak is reduced precipitously as the
detuning from resonance increases. The dispersive component u

does depend on the sign of D. And, unlike v, it is more pronounced
for the atoms that are farther detuned from resonance. The
presence of finite u causes pulse chirping which, in turn, results
in smoothing out the transition between the shock edges.

Finally, to explain the behavior of the inversion, we display in
Fig. 3, the time evolution of inversion for different propagation
distances at a fixed frequency detuning. As we can see in the
figure, at the leading edge of the shock, where the light intensity
is very small, the atomic population is hardly affected by the



Fig. 2. Atomic dipole moment components (u, v) and one-atom inversion w as

functions of dimensionless time, T, displayed at several dimensionless frequency

detuning, D , and at the propagation distance, Z¼13: solid, D ¼�12; dotted,

D ¼�6; dashed, D ¼ 0; dash-dotted, D ¼ 6; long-dashed, D ¼ 12.
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Fig. 3. One-atom inversion w as a function of dimensionless time, T, displayed at

several propagation distances, and D ¼ 15. The ratio of transverse to longitudinal

relaxation times is T?=TJ ¼ 10�7. The initial parameters are O0 ¼ 1:5g? , and

tp ¼ 100T? .
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pulse such that the one-atom inversion is approximately given by
its equilibrium value, weq ¼�1. At the trailing edge, however, a
large pulse amplitude saturates the medium, implying zero
inversion.
4. Conclusion

In summary, we have numerically shown that the results of
our previous work [16] on the novel class of optical shocks in
resonant nonlinear media, can be qualitatively extended to the
case of inhomogeneously broadened media. The shocks are
formed as a result of the interaction between optical nonlinearity
and the transverse relaxation processes in the limit of negligible
energy relaxation processes.
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