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A new class of partially coherent beams with a separable phase, which carry optical vortices, is introduced. It
is shown that any member of the class can be represented as an incoherent superposition of fully coherent

Laguerre—Gauss modes of arbitrary order, with the same azimuthal mode index.

The free-space propagation

properties of such partially coherent beams are studied analytically, and their M? quality factor is investigated

numerically. © 2001 Optical Society of America
OCIS codes: 030.0030, 030.1640.

1. INTRODUCTION

Since Collett and Wolf! demonstrated that a certain class
of spatially highly incoherent sources can produce fields
as directional as those generated by lasers, there has been
a growing interest in studying the properties of partially
coherent light sources and the fields that they generate.
Among those, the sources producing Gaussian Schell-
model (GSM) beams,?™ twisted GSM (TGSM) beams,>™®
and Bessel-correlated Gaussian beams'®!! as well as
some related sources received much attention. GSM
beams have been utilized in connection with a speckle re-
duction problem in diffraction and scattering.'? It was
also demonstrated that the use of partially coherent light
produced by a GSM source may enhance the efficiency of
certain nonlinear optical processes, most notably the
second-harmonic generation.’® Like fully coherent
Bessel-Gauss beams, partially coherent Bessel-correlated
Gaussian beams can propagate over large distances with
little spreading. This remarkable property suggests the
possibility of using such beams in a number of
applications.™

Recently, light beams possessing wave-front singulari-
ties known as optical vortices, have become the focus of
many investigations because of their interesting
properties® %1520 a5 well as because of their potential
applications.?!?® Fully coherent beams with wave-front
singularities have been extensively studied.’®~!® How-
ever, with the notable exception of TGSM beams and
some beams closely related to them,? ®2° much less is
known about partially coherent beams that may carry op-
tical vortices. To our knowledge, the partially coherent
beams carrying optical vortices that have been introduced
so far possess a fairly subtle position-dependent phase
(twist phase). The twist phase is inseparable, i.e., the
cross-spectral density of a beam with such a phase at a
pair of points in the plane transverse to the direction of
propagation cannot be represented as a product of a phase
factor and a function depending only on the radial coordi-
nates of the points. On the other hand, the fully coherent
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beams with optical vortices are the familiar Laguerre—
Gauss modes,?* which have a separable phase with a
simple helicoidal structure. The latter circumstance con-
siderably simplifies analysis of such beams. In this con-
nection, it is interesting to ask whether one can construct
partially coherent beams with a separable phase that
carry optical vortices. Beams of this kind could be uti-
lized in the situations where highly isotropic coherence
properties are needed. This is so, because, as we will
demonstrate, the modulus of the spectral degree of coher-
ence of such beams at any pair of points in a plane trans-
verse to the propagation direction of the beam is indepen-
dent of the relative orientation of the points.

In this paper, beams with such properties are intro-
duced. We will show how the sources that generate these
beams can be represented by a combination of the nor-
malized Laguerre—Gauss modes of arbitrary order with
the same phase dependence. We then study propagation
properties of this new family of beams. Since any mem-
ber of the family may be constructed from the modes that
are shape invariant on paraxial propagation in free space,
the shape of the cross-spectral density of any beam that
belongs to the new class remains unchanged on propaga-
tion as well. We will also find that the cross-spectral
density of such beams is invariant with respect to the spa-
tial Fourier transform in the transverse plane, a property
that makes these beams similar to GSM and TGSM
beams.

This paper is organized as follows. In Section 2, we
apply second-order coherence theory in the space-
frequency domain to obtain an analytical expression for
the cross-spectral density of the new class of sources. In
Section 3, the radiant intensity distribution of the fields
produced by the new sources is discussed. We then elu-
cidate the conditions under which these sources generate
paraxial beams. In Section 4, we find an expression for
the cross-spectral density of such a beam at any pair of
points in the half-space z > 0, into which the beam propa-
gates. Finally, we determine numerically the M? quality
factor of such beams.
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2. CROSS-SPECTRAL DENSITY OF THE
NEW FAMILY OF SOURCES

The goal of this section is to obtain, on the basis of second-
order coherence theory in the space-frequency domain
(Ref. 25, Sec. 4.7.1), partially coherent fields whose phase
structure is similar to that of the fully coherent
Laguerre—Gauss beam. For this purpose, we consider
such a beam propagating into the half-space z > 0.

Let us first recall that the field distribution of such a
beam in the source plane z = 0 is given by the expression

V2p\" (2p? p*
vp)=|— LZ(—Q)eXP(—imqﬁ)exp(——z), (1)
w w w

where p = (p, ¢) is a position vector of a point in the
source plane, w is a spot size at the waist of the beam, m
is the azimuthal mode index, and 7 is the order of the La-
guerre polynomial L7'(x). It is clearly seen from Eq. (1)
that the phase dependence of each Laguerre—Gauss mode
is specified by a factor exp(—im¢); in other words, it has a
separable phase.

To find a partially coherent source that generates a
field with a separable phase, we recall that the cross-
spectral density W(p, p’, o) of a partially coherent, pla-
nar source can be represented as a Mercer-type series of
spatially completely coherent modes #,(p, w) at given fre-
quency w by means of the expression (Ref. 25, Sec. 4.7.1)

Wip, p', 0) = 2 Nt (p, 0)d(p', o). @)

Here the subscript s stands for a set of integers labeling
the modes, and )\, is the eigenvalue corresponding to the
mode ¢, .26 The modes can be chosen to form an ortho-
normal set. Each mode is a solution of the integral equa-
tion

f d®p W(p, p', 0)ths(p) = Ntbo(p), 3)

where the eigenvalues )\, are necessarily real and non-
negative:

s = 0. (4)

Next, consider the following summation formula for La-
guerre polynomials®”:

” n!
2w R
(xyz)””/2 z(x +y) (\/4xyz>
= I, . (5)
1 - 1 -2z 1-2z

Here I,,(x) is a modified Bessel function of order m, and z
is, in general, a complex number such that |z| < 1. On
making the substitutions x = 2p%/w?2, y = 2p'?/w?, and
z = ¢ and on multiplying both sides of Eq. (5) by
A(plw)™(p'lw)™ exp[—(p® + p'2/w?], we obtain the for-
mula
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Ag—m/Z

= gexp[—lm(¢— ')]
y 1+§(p2+p'2)1(4§p_p’)
exp 1-¢ w? mlfng

= 2 2 ANt (), ©)
where A is a positive constant, gl/n( p) is given by Eq. (1),
and

n!

_ 1
C(n+ 1)155”‘” )

)\nl
where 6,,; is the Kronecker symbol. On comparing Eq.
(6) with Eq. (2), we conclude that the former is just a
modal expansion of the cross-spectral density of the
source that produces a partially coherent field with the
separable phase. The modes are the Laguerre—Gauss
functions (1), and the eigenvalues are specified by Eq. (7).
We rewrite this cross-spectral density in the form

Ag*m/?
Wip p) = T expl—im(¢ ~ ¢')]
y 1+§<p2+p'2)1(4§p_p'>
P TT e w2 ™1 w?)

(8

It should be noted that in view of condition (4), the weight
factor ¢ is necessarily real and nonnegative; moreover,
when we take into account the range of validity of Eq. (5),
it follows that 0 < & < 1.

We now briefly examine the spectral intensity and the
spectral degree of coherence of a field generated by such a
source, and, in doing so, we elucidate the physical signifi-
cance of the parameter & The expression for the spectral
intensity S(p), which is represented by the diagonal ele-
ment of the cross-spectral density, follows at once from

Eq. (8):
e
I, .

1- ¢w?

S(p) =

AgmP ( 2p% 1 + &
1Pl T w21 - ¢

In Fig. 1, a normalized spectral intensity is displayed ver-
sus the dimensionless radial coordinate p/w. It is seen

3 7 Pl

Fig. 1. Normalized spectral intensity S(p) = S(p)/f odp pS(p)
versus dimensionless radial variable p/w for different values of
the azimuthal phase index m (m = 0, 1,2). The coherence pa-
rameter ¢ is taken to have the value ¢ = 0.5.
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from this figure that any member of the new family of
fields, except the axially symmetric one (m = 0), has an
annular shape with a dark central region. It is of inter-
est to note that the same property is characteristic of an-
other class of partially coherent beams, closely related to
the TGSM beams.?°

The spectral degree of coherence is defined by the ex-
pression

) Wip, p)
VW(p, VW (p', p)

In the present case, one finds, with the help of Eq. (8),
that

u(p,p') (10)

n(p, p') =exp[—im(¢ — ¢')]
I1,,(2pp'lc?)
X .
VL2020 2NI,,(2p"% 0,2)

Here a characteristic distance, the spatial coherence
length o,, has been introduced, over which the field in
the transverse plane remains correlated. It is given by
the expression

11

1 o¢

— = . (12)
o’  (1- Hw?
On solving Eq. (12) for & one arrives at
gy w12 2
= —ll1+ —| -1 (13)
el

It follows from Eq. (13) that & specifies the spectral degree
of coherence of the field, with ¢ — 0 corresponding to the
fully coherent case ( 0, — *) and with & — 1 correspond-
ing to the completely incoherent case (o, — 0). It is
also evident from Eq. (13) that 0 < ¢ < 1, which is a nec-
essary condition for the validity of the above mode expan-
sion.

Another important conclusion can be drawn from ex-
pression (11): The absolute value of the spectral degree
of coherence at a pair of points in the transverse plane is
independent of the relative orientation of these points,
and it depends solely on the radial distance between
them. This conclusion is illustrated in Figs. 2 and 3,
where |u| has been plotted for the beams with m = 0 and
m = 10, respectively. It can also be seen from these fig-
ures that the modulus of the spectral degree of coherence
attains its maximum at the points with p = p’ and that
the greater the absolute value of the azimuthal phase in-
dex m of the beam, the slower the decrease of |u| with the
radial separation |p — p’| of the two points.

Finally, on expanding the modified Bessel function of
integer order m in a Taylor series for small values of the
argument and retaining in Eq. (8) only the leading term,

1 [x\™
I,(x)=—|—]|, (14)
(=) m!\2
one finds that in the fully coherent limit (o, — ), the
cross-spectral density reduces to that of the fully coher-

ent, lowest-order Laguerre—Gauss beam:
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Fig. 2. Modulus of the spectral degree of coherence w of the axi-
ally symmetric field m = 0 at a pair of points with polar coordi-
nates (p, ¢) and (p’, ¢'), respectively. The coherence parameter
¢ is taken to have the value ¢ = 0.5.

Pl = R
1 - = \ 2
L SiEs & 8
1 >
A N\\
0.5 <
.25
0

plw

Fig. 3. Same as in Fig. 2 but with the field possessing the azi-
muthal phase index m = 10.

] p m p/ m
W(p, p') ~ explim( ¢ — ¢’)]<;) (;)

p2 pr2
X exp —5)exp| T - (15)

3. PROPERTIES OF THE FIELDS
GENERATED BY THE NEW CLASS OF
SOURCES

A. Radiant Intensity Distribution

In this subsection, we study the radiant intensity distri-
bution of the field generated by the partially coherent
source, whose cross-spectral density is given by Eq. (8).
The radiant intensity J(8) of a statistically stationary,
planar, secondary source is defined as the radiative power
that crosses a unit area in the far zone, in the direction
specified by a unit vector §, and characterizes the angular
spread of the radiation pattern produced by the source.
It can be shown (Ref. 25, Sec. 5.3.1) that it is given by the
expression



Sergey A. Ponomarenko

J(8) = W(—ks, , ks,), (16)

where £ = w/c is the wave number associated with the
frequency w; s, (|s,| < 1) is a projection, considered as a
two-dimensional vector, of the unit vector § onto the
source plane, and W(£, £) is defined by the formula

B d2pd2pr .
W', f) = fJWW(p’ p)exp[—i(fp + £'p")].
1)

Therefore, to find the radiant intensity distribution, one
must determine the spatial Fourier transform (17) of the
cross-spectral density. Use of the mode expansion con-
siderably facilitates this task. It follows at once from Eq.
(8) that

W, £) = 2 Nud i (E)ghh), (18)
n,l

where %(f ) represents the two-dimensional spatial Fou-
rier transform of the mode function (1).

Next, we evaluate the Fourier transform of an indi-
vidual mode by making use of the integral representation
J,,(x) for a Bessel function of order m,”

2@ d¢
Jp(x) = J —exp(im¢ — ix cos ¢), (19)
0o 2
and also of the formula®®
J dxxmexp(—px)Ja(b\/;)Lff(cx)
0

b 2
4p

. b2c/4p

2

(b)“(pC)”

pn+a+1 exp(

). (20)
c—p

We carry out the calculation with the parameters
p=12¢=1,and b = fw/\y2. On comparing the re-
sulting expression with Eq. (1), we conclude that each
mode maintains its functional form upon the spatial Fou-
rier transformation in the transverse plane. Hence the
functional form of the cross-spectral density of the field it-
self is invariant under this transformation. The cross-
spectral density of the partially coherent field in the Fou-
rier space is then obtained by adding up contributions
from the individual modes. The resulting expression is

A(w2/2)2§7m/2

Wt ') = - exp[im (6 — 6')]
1+ &E(f+ f’z)wT (\/Eff’wz)
X exp I, .
1-¢ 4 1-¢
(21)

Here f=(f,0) and f’' = (f’,6') are the spatial-
frequency vectors in the Fourier space. It now follows
from expression (16) for the radiant intensity that

Vol. 18, No. 1/January 2001/J. Opt. Soc. Am. A 153

(a) £ =0.01

o
[N]
=~
[2))
o
-
=}
[
[ 5]

k‘wlS_Ll

Fig. 4. Radiant intensity of the field with the azimuthal phase
index m = 1, plotted as a function of the dimensionless spatial
frequency kwls,| for two cases: (a) very coherent source
(¢ = 0.01) and (b) nearly incoherent source (¢ = 0.91). The ra-
diant intensity is normalized to the total power.

Bgfm/Z
J(8) = —— ;
1+ §k2w2|sl|2> (@kzw%sﬁ)
X exp I, ,
1-¢ 2 1-¢&

(22)

where B = Aw*/4. Figure 4 shows the behavior of the
radiant intensity in two limits: a spatially very coherent
source (¢ ~ 0.01) and a spatially very incoherent one
(£ = 0.91). It can be seen from the figure that the radi-
ant intensity distribution in the nearly coherent case is
fairly symmetric about its maximum, with the distribu-
tion width being well approximated by the inverse spot
size w; however, the radiant intensity of the nearly inco-
herent source tends to have a long tail, whose length is
roughly equal to the inverse coherence length o,. We
will show in Subsection 3.B that these qualitative fea-
tures of the radiant intensity give rise to the appropriate
conditions for a source to generate a beamlike field.

B. Generation of a Beamlike Field

So far, we have described the source that produces a field
whose cross-spectral density in the source plane is given
by Eq. (8), without resorting to the paraxial approxima-
tion. However, for such a field to be beamlike, propagat-
ing close to the z axis, certain restrictions on the values of
the spot size and the spatial coherence length must be im-
posed. We recall that the radiant intensity J(8) of a
beamlike field can have appreciable value only in those
directions whose unit vectors § form a narrow solid angle



154 J. Opt. Soc. Am. A/Vol. 18, No. 1/January 2001

around the z axis. Mathematically, this condition can be
stated as (Ref. 25, Sec. 5.6.3)

W(—£,£f)~0  unless |f| <E. (23)

The preceding analysis has revealed that the radiant in-
tensity distribution varies significantly when the state of
coherence of the source is varied. It is, therefore, instruc-
tive to study separately the cases of a very coherent
source and a very incoherent source.

First, we consider an almost coherent source (¢ — 0).
In Eq. (21) we expand the modified Bessel function of in-
teger order m in a Taylor series for small values of the ar-
gument and keep only the leading term, given by relation
(14). Further, on substituting the resulting expression
for the radiant intensity into relation (23), we find that

(fw)™ exp(—f2w?/2) ~ 0 unless [f| < k. (24)

Since the magnitude of the left-hand side of relation (24)
is appreciable only when f < 1/w, condition (24) is
equivalent to the condition

Vw? < k2. (25)

In physical terms, this inequality implies that a charac-
teristic diffraction angle of a rather coherent beam,
05 ~ Mw, must be small (§; < 1); it characterizes the
paraxial regime for fully coherent beams.

Next, we focus on the case of a nearly incoherent source
(¢ — 1). In this case, the right-hand side of Eq. (21) can
be simplified by utilizing the asymptotic expression for
the modified Bessel function for large values of its argu-
ment (x > 1), viz.,

1

V2 mx

On substituting the resulting expression into relation (23)
and after some algebra, one can cast condition (23) for the
radiant intensity into the form

1 { 1-¢ ;
exp
(1 + &2
@70

Condition (27) is satisfied for wave numbers f such that
F2<(1+ JO%w21 — &. Hence the condition for gen-
eration of a paraxial beam can be written in terms of
the spatial coherence length o, and the wave number
k = 27/\ in the form

1+ Vo2 1
oVe ol

This condition implies that for a nearly incoherent source
(w > o0,), the diffraction angle of a beam is specified by
the spatial coherence length, so that 6; ~ N/o,, and this
angle is small in the paraxial domain (6; < 1).

I,(x)= exp(x). (26)

2w2} ~0 unless |f| < k.

< k2. (28)

4. PARAXIAL PROPAGATION OF THE
BEAM AND THE M? FACTOR

The cross-spectral density of a beam at a pair of points
(p,z) and (p’, z') in the half-space z > 0 is related, in the
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paraxial domain, to the cross-spectral density at a pair of
points in the source plane through the double Fresnel
transform (Ref. 29, Chap. 10) (see also Ref. 30):

k2
W(p,p',z,2') = —5—explik(z — 2’)]f d?py
4722
2 Lk 2

X f d*py W(p, p’, 0)exp g(p - p)
ik

X exp| ——(p' — p2)?|. (29)
2z

On substituting the mode expansion (2) into Eq. (29), we
obtain for the cross-spectral density the expression

Wip,p',2,2) = 2 Namt* (p, 2) 42 (p',2"), (30)

where )'(p,z) is the Fresnel transform of the source
mode ¢,'(p,0). The functional form of the Laguerre—
Gauss source mode is well known at any point z from the
theory of laser resonator modes.?* One has

w \/Ep " 2p2
yn(p,z) = (—) LZ"(—Z)
w w

z wZ

p?
X exp( _F) exp(—im¢)

. kp?
X exp[z kz — (m + 1)®, + Z—RZH, (31)
where w,, R,, and ®, are defined by the expressions
422 \2

w, = (w2 + k2w2) , (32)
kiw*

R,=2z+ P (33)
2z

D, = arctan(m). (34)

Further, on substituting Eq. (31) into the mode expansion
(30) and using Eq. (5) to perform the summation, one ar-
rives at the following expression for the cross-spectral
density at an arbitrary pair of points:

W(p,p',z,2")
Aé‘*m/Z w2
-1 (wzwz,)e"p“m(d’ — )]
X exp{i[k(z —2') — (m + 1)(®, — ®,/)]}
x expl[i(kp*2R, — kp'%/2R..)]
p® p’z)l (4\@ pp’ )

w,? 1-¢ww, |

1+¢
1-¢

X exp +
w22 wz/2

(35)

It is seen from Eq. (35) that if one chooses any point, say
(p',z'), to be a reference point, the overall phase of the
cross-spectral density of the partially coherent beam rela-
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Fig. 5. Dependence of the M? beam factor on the coherence pa-
rameter £ The solid curve corresponds to a vortex-free beam
with the angular index m = 0, whereas the dashed and dotted—
dashed curves correspond to beams with topological charges
m = 2 and m = 4, respectively.

tive to this point will have the same helicoidal shape as
that of the phase of the fully coherent Laguerre—Gauss
beam of Eq. (31). Therefore the wave front of the former
beam is endowed with a vortex structure similar to that of
the latter, with the azimuthal mode index m being a to-
pological charge of the optical vortex.!5718

To describe more fully the quality of partially coherent
beams, one may use invariant quality parameters intro-
duced in Ref. 31 as early as 1985 (see also Ref. 32 for the
rotationally symmetric case). However, it is sufficient for
our purposes to calculate the beam quality factor of Sieg-
man, M2. For any beam with an axially symmetric in-
tensity distribution, this factor is defined as®?

M? = 27wo,0., (36)

where o, is the second-order moment of the spectral in-
tensity distribution and o, is the second-order moment of
the radiant intensity distribution. These moments are
defined by the expressions

fdzp p*S(p)
g, = —, 37)
fdeS(p)

f dz(ksL)(ksL)zJ(ksL)
O = , (38)

f d*(ks,)d (ks,)

respectively. In our case, the spectral intensity S(p) is
given by Eq. (9), and the radiant intensity J(§) is ex-
pressed explicitly by Eq. (22). In this case, analytical ex-
pressions for the integrals in Eqgs. (37) and (38) involve
cumbersome combinations of hypergeometric functions.
Therefore all the integrations have been performed nu-
merically. The results are presented in Fig. 5. In this
figure, the quality factor is plotted as a function of the pa-
rameter ¢ for the vortex-free beam with the angular index
m = 0 together with that of the beams carrying vortices
with topological charges m = 2 and m = 4, respectively.
It is seen from the figure that the presence of a vortex de-
grades the quality of the beam. This conclusion agrees
well with earlier findings of Ref. 34, where it was shown
that in the case of a generic vortex, in order to preserve a
hole, which the vortex burns inside a beam, the vortex
phase must counterbalance the diffraction. The compe-
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tition between these effects deteriorates beam quality. It
can also be seen from Fig. 5 that the quality factor in-
creases approximately linearly with the increase of the
parameter ¢ (or, equivalently, with the decrease of the
spectral coherence length) and remains relatively small
until £ reaches a value of approximately 0.55. The sub-
sequent decrease of the spectral coherence length beyond
this point results in a fast deterioration of beam quality.

5. CONCLUDING REMARKS

This analysis can be summarized by saying that a new
family of partially coherent beams with a separable phase
has been introduced. This phase acquires a vortex struc-
ture on paraxial propagation of the beam in free space.
Any member of the family is generated by the incoherent
superposition of the fully coherent, normalized,
Laguerre—Gauss modes of arbitrary order, with the same
azimuthal mode index. In complete analogy with fully
coherent beams carrying optical vortices, the azimuthal
mode index of the partially coherent beams that were in-
troduced plays the role of a topological charge.'® It was
also shown that the cross-spectral density of the new class
of beams is invariant under the spatial Fourier transfor-
mation in a plane transverse to the direction of propaga-
tion of the beam. This property, together with their
shape invariance on paraxial propagation, makes these
beams similar to ordinary Gaussian Schell-model (GSM)
beams or to twisted Gaussian Schell-model (TGSM)
beams. However, unlike the spectral degree of coherence
of GSM and TGSM beams, the spectral degree of coher-
ence of the new beams is independent of the relative ori-
entation of a pair of points in the transverse plane. This
remarkable property might be useful for applications
where highly isotropic coherence properties of light are
required.
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