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We examine coherence properties of small-area, intrinsically stationary statistical pulses propagating in amplify-
ing media in the vicinity of an optical resonance. Any suchmedium acts as a coherent linear amplifier, amplifying
and reshaping the pulse. We show that an initially nearly incoherent Gaussian Schell-model pulse becomes
almost fully coherent and its state of coherence becomes nearly uniform across the temporal profile as the pulse
propagates into the amplifying medium. © 2013 Optical Society of America
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1. INTRODUCTION
The interest in statistical properties of ultrashort pulses
stems, in part, from the fundamental limitations noise im-
poses on the performance and accuracy of state-of-art
fiber-optical communication systems [1]. To date, there
has been extensive research on modeling statistical proper-
ties of intrinsically stationary [2,3] and cyclostationary [4,5]
random pulses and pulse trains as well as on such funda-
mental issues as defining and measuring statistical pulse
spectra [6,7] and cross-spectral correlations [7]. Space–time
correlation dynamics of statistical pulses were also ad-
dressed, both theoretically [8,9] and experimentally [10],
and several theories dealing with various representations
of statistical pulses were advanced [11–13]. Further,
statistical properties of pulses during their propagation in
optical fibers [14,15] and generic linear [16–18] and non-
linear [19] dispersive media far from any optical resonances
were examined.

At the same time, near-resonant propagation of statistical
pulses in linear media has also been explored [20–23]. In par-
ticular, shape-invariant fully coherent pulses propagating in
coherent linear amplifiers and absorbers in the resonant re-
gime were discovered [20,21], and the influence of statistical
properties on self-similar pulse evolution was examined in
resonant absorber media [22]. Moreover, global correlation
properties of generic partially coherent pulses in resonant
linear absorbers were examined and the general area-
correlation theorem was derived [23]. To our knowledge,
however, coherence properties of ultrashort statistical
pulses propagating in resonant amplifying media have not
yet been studied.

In this work, we explore coherence properties of small-
area, intrinsically stationary statistical pulses during their
propagation in coherent amplifying media. First, we show
that initially symmetric pulse intensity profiles become
asymmetric upon propagation in the media. In particular,
coherence properties of Gaussian Schell-model (GSM)
pulses—which represent a rather generic model of

intrinsically stationary pulses, generated, for instance, by
temporal modulation of a statistically stationary source with
a Gaussian spectrum [3]—become nearly uniform across the
temporal profile of the pulse over sufficiently long propaga-
tion distances in the amplifier. This contrasts sharply with
rapid variations of temporal coherence properties across
the pulse profile for statistical pulses propagating in resonant
linear absorbers [23]. We also note that coherence properties
of GSM pulses remain uniform in conservative dispersive
media, e.g., optical fibers [14]. Second, we demonstrate that
even initially rather incoherent pulses become progressively
more coherent upon propagation in amplifying media.
Thus, not only do the media amplify and reshape the pulse,
but they also reduce the noise associated with source
fluctuations. This circumstance can have important implica-
tions for short-range optical communications with ultrashort
pulses.

2. STATISTICAL PULSE PROPAGATION IN
COHERENT LINEAR AMPLIFIERS
As the first step, we model the pulse propagation in a
coherent resonant amplifier media. We describe a resonant
medium using the two-level atom model. The pulse evolution
in the medium can be described in the slowly varying
envelope approximation by the reduced wave equation
[20,24]

∂ζΩ � iκhσiΔ: (1)

In Eq. (1), κ � ωNjdegj2∕cϵ0ℏ is a coupling constant, with N
being the atom density and deg being the dipole matrix
element between the ground and excited states of an atom;
Ω � 2degE∕ℏ is the complex pulse envelope amplitude in
frequency units corresponding to the field envelope E. In
Eq. (1), h…iΔ implies averaging over a distribution of detun-
ings Δ of the carrier wave frequency ωc from the atomic
resonance frequency ω0; as in our previous studies [23],
we assume a Lorentzian detuning distribution with a
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characteristic decay time TΔ associated with inhomoge-
neous broadening. The complex dipole envelope function
σ and one-atom inversion w obey the Bloch equations in
the form [24]

∂τσ � −�γ⊥ � iΔ�σ − iΩw; (2)

and

∂τw � −γ⊥�w −weq� −
i
2
�Ω�σ − Ωσ��: (3)

Here γ⊥ � 1∕T⊥ is a dipole relaxation rate, and T⊥ is a dipole
relaxation time. In Eqs. (1)–(3) we introduced the shifted
coordinates: ζ � z and τ � t − z∕c.

For small-area input pulses, one can neglect any amplifier
gain depletion, implying that w can be well approximated by
its equilibrium value weq (linear amplifier), i.e.,

w ≈ weq � 1: (4)

The linearized dipole moment evolution equation then reads

∂ζσ � −�γ⊥ � iΔ�σ − iΩ: (5)

Equations (1) and (5) can be solved using a Fourier-
transform technique, resulting in

E�τ; ζ� �
Z

∞

−∞
dω ~E0�ω� exp

�
−iωτ� αζ

2�1 − iωTeff�

�
: (6)

Here T−1
eff � T−1

⊥
� T−1

Δ is an effective relaxation rate that
fully characterizes damping in the Lorentzian detuning
distribution case. Also, α � 2κ∕γ⊥ is a small-signal
amplification coefficient. The incident pulse spectrum
is given by

~E0�ω� �
Z

∞

−∞

dt
2π

E�t; 0�eiωt: (7)

The second-order coherence properties of small-area
statistical pulses in the amplifying media are specified by
the two-time correlation function Γ�τ1; τ2; ζ�, defined as

Γ�τ1; τ2; ζ� � hE��τ1; ζ�E�τ2; ζ�i; (8)

where the angular brackets denote ensemble averaging. It
follows from Eqs. (6)–(8) that

Γ�τ1; τ2; ζ� �
Z

∞

−∞
dω1

Z
∞

−∞
dω2W0�ω1;ω2�ei�ω1τ1−ω2τ2�

× exp
�
αζ

�
1

2�1 − iω2Teff�
� 1

2�1� iω1Teff�

��
:

(9)

Here W0�ω1;ω2� � h ~E�
0�ω1� ~E0�ω2�i is the cross-spectral

density of the pulse fields at the source; it is related to the
corresponding two-time correlation function, viz.,

W0�ω1;ω2� �
Z

∞

−∞

Z
∞

−∞

dt1dt2
�2π�2 ei�ω2t2−ω1t1�Γ0�t1; t2�: (10)

3. INTENSITY AND COMPLEX DEGREE OF
COHERENCE EVOLUTION FOR
INTRINSICALLY STATISTICALLY
STATIONARY PULSES IN COHERENT
LINEAR AMPLIFIERS
Next, we explore the influence of the input pulse coherence
on its subsequent propagation dynamics in the amplifier. To
this end, we consider incident GSM pulses [2] as a rather gen-
eric statistical model of the source. The choice of the GSM
model has two advantages. First, GSM pulses can be easily
generated in a laboratory by “chopping” with a Gaussian
temporal modulation function an output of a statistically sta-
tionary source with a Gaussian spectrum [3]. Second, being
intimately related to statistically stationary sources, the
generated pulses are intrinsically stationary with a Gaussian
correlation function that decays very fast with the time differ-
ence. Thus, the conditions for the ergodicity hypothesis are
met [25] and any time averages arising in actual experiments
converge well to ensemble averages employed throughout
this work.

The two-time correlation function of the GSM pulse can be
written as

Γ0�t1; t2� ∝ exp
�
−
t21 � t22
2t2p

�
exp

�
−
�t1 − t2�2

2t2c

�
; (11)

where tp and tc are the characteristic pulsewidth and coher-
ence time, respectively. As we are interested in the coherent
coupling between the near-resonant pulse and medium atoms,
we focus on the short pulse limit such that tp ∼ Teff . In parti-
cular, we let tp � Teff∕2 throughout our numerical simulations,
and introduce dimensionless variables, Z � αζ and T � t∕Teff .

In Fig. 1, we display the behavior of the GSM pulse intensity
profile, I�T; Z� � Γ�T; T; Z�, on propagation in the amplifier
for two cases: (a) tc � 5tp, corresponding to an almost fully
coherent input pulse, and (b) tc � tp∕5, corresponding to a
nearly incoherent input pulse. It is seen in Fig. 1 that as both
pulses are amplified, their shapes become progressively more
asymmetric, developing a long tail in the trailing edge. How-
ever, the amplifying medium affects the pulse with the shorter
coherence time less than it does the more coherent pulse. This
is because the less coherent pulse has a broader spectrum,
containing a significant portion of its initial energy in the tails,
outside the medium gain spectrum. Therefore, it is amplified
less efficiently by the medium than is the more coherent pulse.

Fig. 1. Pulse intensity profile in arbitrary units (a.u) as a function of
the dimensionless propagation distance Z for two partially coherent
pulses: (a) tc � 5tp and (b) tc � tp∕5.
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To drive this point home, we exhibit in Fig. 2 the energy
gain factor, G�Z� � W�Z�∕W0, where the pulse energy W is

W�Z� ∝
Z

∞

−∞
dTΓ�T; T; Z�; (12)

for both pulses as a function of the propagation distance. It
is clearly seen in the figure that the more coherent pulse is
able to extract much more energy from the amplifying
medium over the same propagation distance than is the less
coherent pulse.

Next, we examine the behavior of the complex degree of
coherence γ, defined (in dimensionless variables) as [25,26]

γ�T1; T2; Z�≡
Γ�T1; T2; Z������������������������������������
I�T1; Z�I�T2; Z�

p : (13)

In Fig. 3 we display the complex degree of coherence of the
pulse with tc � 5tp for two propagation distances, Z � 1 and
Z � 5. We can see from the figure that not only does the pulse
become more coherent on propagation, but its coherence
properties become more uniform as well. In the insets in
Figs. 3(a) and 3(b), we display the corresponding pulse inten-
sity at the same propagation distance. It is seen from Figs. 3(a)
and 3(b) that the chosen ranges for T1 and T2 in both cases
correspond to the time intervals within which most of the
pulse energy resides at a given propagation distance. Thus,
our γ plots are representative of the whole pulse.

It is interesting to compare the behavior of the fairly coher-
ent pulse we have just studied with that of a relatively inco-
herent pulse with tc � tp∕5. The evolution of the complex
degree of coherence for the latter is shown in Fig. 4. Similarly
to Fig. 3, we display the pulse intensity in the corresponding
inset, which sets the T1 and T2 ranges. We can infer by com-

paring Figs. 3 and 4 that although qualitatively the behavior of
γ is the same regardless of the initial state of pulse coherence,
the coherence state of initially nearly incoherent pulses
becomes nearly uniform across their temporal profile—apart
from the pulse tails—and the magnitude of γ tends to unity
with the propagation distance.

4. SUMMARY AND DISCUSSION
Finally, we mention that the small-area approximation, which
is necessary for the system to be in the linear amplification
regime, imposes severe constraints on the input pulse para-
meters and/or amplifier lengths. Hereafter we assume, for sim-
plicity, the input pulse to be fully coherent, which is fine for
the order-of-magnitude estimates. First of all, the pulse areaA
at the exit of the amplifier must be much smaller than π for
nonlinear saturation effects to be negligible over the entire
amplifier length [24]. Let us take A ∼ 0.1, say, implying that
for the amplifier of length L � 5LB, measured in Beer’s ab-
sorption lengths, LB � α−1, the input pulse area must be tiny,
A0 ∼ 5 × 10−4, where we used the area theorem for coherent
amplifiers [27].

However, the very small magnitude of the input pulse area
begs the question as to whether the incident pulse contains
enough photons to be treated classically. To address this ques-
tion, we estimate the input Gaussian pulse energy density,

w0 �
1
2
ϵ0c

Z
∞

−∞
dtjE�t; 0�j2 � 1

2
ϵ0c

���
π

p
tpE2

0; (14)

where E0 is the peak amplitude of the pulse. The input area
can be estimated as

A0 �
2deg
ℏ

Z
∞

−∞
dtE�t; 0� � 2deg

������
2π

p
tpE0

ℏ
: (15)

Eliminating the peak pulse amplitude from Eqs. (14) and (15),
we arrive at the input energy density

w0 �
ϵ0cℏ2A2

0

16
���
π

p
degtp

: (16)

Assuming a picosecond laser pulse of 1 cm2 cross section and
taking deg ≃ 10−29 cm, which is appropriate for atomic vapors
[24], we substitute these values into Eq. (16) to estimate the
input pulse energy as W0 ∼ 5 × 10−13 J. It follows that the num-
ber of photons carried by the pulse can be estimated as
N 0 � W0∕ℏωc ≃ 5 × 106 ≫ 1, which is sufficiently large to treat
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Fig. 2. Energy gain factor as a function of the dimensionless propa-
gation distance Z for two partially coherent pulses: (a) tc � 5tp and
(b) tc � tp∕5.

Fig. 3. (Color online) Magnitude of the complex degree of coherence
of a short GSM pulse with tc � 5tp for (a) Z � 1 and (b) Z � 5. Insets:
the corresponding pulse intensity profiles.

Fig. 4. (Color online) Magnitude of the temporal degree of coher-
ence of a short GSM pulse with tc � tp∕5 for (a) Z � 1 and
(b) Z � 5. Insets: the corresponding pulse intensity profiles.
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the pulse as a classical electromagnetic field. However, this cri-
terion can be easily violated as the amplifier length increases.

In summary, we studied partially coherent pulse propaga-
tion in resonant linear amplifiers, focusing on the change in
pulse coherence properties upon propagation. We have
shown that regardless of the initial state of pulse coherence,
it becomes progressively more coherent during propagation in
the amplifying medium. Moreover, the state of coherence be-
comes progressively more uniform across the temporal profile
as the pulse propagates into the medium. We also discussed
the constraints imposed by the linear amplification regime on
the input parameters of the pulse and the amplifier length.
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