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Abstract—Although meshless methods, in particularly those
with scalar radial basis functions (RBFs), have been applied
effectively to solve electromagnetic problems, their solutions may
not be always divergence free in source-free regions, resulting
in possibly large errors. In this paper, a new vector RBF based
meshless method, which is divergence free, is proposed for solving
transient electromagnetic problems. Its divergence properties are
investigated and compared with those of scalar RBFs; and they
are further verified with numerical examples that present good
accuracy.

Index Terms—Divergence free, meshless, transient analysis,
vector radial basis function (RBF).

I. INTRODUCTION

T HE conventional numerical methods for solving electro-
magnetic problems, such as the finite-difference time-do-

main (FDTD) method [1], the finite-element method (FEM) [2]
and the method of moments (MOM) [3], are grid- or cell-based
techniques. For the FDTD method, discretization of solution
domains can be considered as discretization with rectangles in
two dimensions and cuboids in three dimensions [4]. For the
FEM, continuous solution domains are usually discretized with
triangles in two dimensions and tetrahedron in three dimensions
[2]. These discretized cells are stacked together or inter-placed
within each other and their interfaces then lead to grid or mesh
lines whose intersections form spatial nodes. In other words,
grid lines define spatial nodes associated with the finite cells
and the connections among the nodes.
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However, for practical structures with complex geometries,
the above discretization scheme can become very complicated
and even time consuming; in some situations, it may take the
time longer than an actual field simulation time. In addition,
when a small modification is made to a part of a structure to be
solved, a re-discretization process may be needed for the whole
solution domain due to repositioning of some grid lines than
run through the whole solution domain. The time involved in
re-discretization can be unacceptably long, especially for elec-
trical large and multiscale structures.
To address the above issue, meshless methods are proposed

where solution domains are discretized directly with spatial
nodes instead of finite elements. They include the scalar radial
basis function (RBF) method [5], the radial point interpolation
method (RPIM) [6], the smoothed particle meshless method
[7], and the edge-based smoothed point interpolation methods
(PIMs) [8]. A 3-D RPIM was especially proposed in [9] and an
unconditionally stable RPIM was presented in [10]. For most
of these meshless methods, only spatial node information is
needed to formulate electromagnetic problems. No connection
information or grid lines among nodes are required. As a result,
no rearrangements of grid lines are required when a structure is
modified partially. In addition, [11] demonstrates the existence
of spurious modes in the traditional RPIM.
In a continuous domain, electromagnetic fields observe the

divergence property: magnetic fields are always divergence free
and so are electrical fields in charge-free regions. When numer-
ical methods are developed for solving electromagnetic prob-
lems, this divergence property may not be preserved numer-
ically and spurious numerical solutions may emerge [12]. In-
deed, it has been found that the original meshless method does
not always have this divergence-free property; spurious solu-
tions exist in the solutions obtained.
On the other hand, divergence-free RBFs were developed for

nonelectromagnetic applications. A matrix-valued RBF, which
is termed as the vector RBF in difference from the scalar RBF,
was proposed and proven theoretically divergence free [13].
More work along this line was presented in [13]–[15]. In partic-
ular, the divergence-free vector RBFwas successfully applied to
the Navier–Stokes equation [15] and astrophysical magneto-hy-
drodynamics (MHD) [16]. However, to the best knowledge of
the authors, no reports were seen to apply the vector RBFs to
computational electromagnetics and little has been addressed on
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divergence properties of numerical methods that solve electro-
magnetic problems.
In this paper, we propose a meshless method incorporated

with the above vector RBF for transient electromagnetic anal-
ysis. The proposed meshless method is theoretically proven to
be divergence free in the source-free region. Therefore, no artifi-
cial charges or spurious solutions will be present in the solutions
of the meshless methods, making them more accurate.
This paper is organized in the followingmanner. In Section II,

the traditional RBF meshless method is briefly introduced. In
Section III, basics of the vector RBFs are presented and the
properties of the scalar and vector RBFs are discussed. In
Section IV, the formulations of the divergence-free meshless
method for modeling electromagnetic fields are developed. In
Section V, accuracy and divergence properties of the proposed
meshless method are verified numerically. Finally, conclusions
are drawn in Section VI.

II. ORIGINAL SCALAR RBF MESHLESS METHOD
In order to better understand the vector RBFs, we first give

a brief introduction to the conventional scalar RBF meshless
method in this section.
The scalar RBF method was firstly introduced to solve

partial differential equations by Kansa [17], [18]. Consider an
unknown function that is interpolated with the function
values at the discretized scattering points of in a solution
domain. can then be approximated by the RBF as follows:

(1)

where is the RBF, is the location of
the point of interest, is the location of node ,
is the number of nodes in a local support domain, and are

the unknown expansion coefficients. Several different types of
RBFs can be used in (1). We select the Gaussian function as the
scalar RBF in this paper. Its formulation can be expressed as

(2)

where is the Euclidean distance between the
point of interest and node , and is the shape parameter that
controls the decaying rate of the basis function.
To find the unknown expansion coefficients, (1) is enforced to

pass through all the nodes within a local support domain. A set
of linear equations corresponding to the nodes is then obtained
and it can be rewritten in the following compact matrix form:

(3)

where with being the value of function
at node . and

...
...

...

(4)

Since is always invertible (as (2) is selected as the RBF [20]),
expansion coefficients can be obtained by inverting . Sub-
stitution of into (1) leads to

(5)

where contains the RBFs,
and is the

shape function associated with spatial node .
Since the shape function is a continuous function, its first-

order partial derivatives can be analytically obtained as

(6)

III. PROPOSED VECTOR RBF MESHLESS METHOD
In this section, we propose the divergence-preserved mesh-

less method with the vector RBFs presented in [13]–[15] and
then analytically prove the divergence properties of the method.
We also examine other properties of the method.

A. Proposed Vector-Based RBF

Mathematically, a divergence-free field, denoted as , can
always be expressed as the curl of another vector field, say, ,
as follows:

(7)

where .
is not unique in (7). Therefore, additional conditions are

needed. One common choice is Coulomb gauge, ,
which means that we can let be the curl of a third vector
function. In our case, we select the following form:

(8)

where is a preselected scalar basis function and
is the unknown vector expansion coefficient

to be determined. Equation (8) forms the basis function expan-
sion of the vector field , and consequently, vector field can
be expressed as

(9)

where is the 3 3 identity matrix, and is the Laplace oper-
ator, which can be expressed as

(10)
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Based on (9), we can then define the vector RBF related
to node and shape function as

(11a)
(11b)

and

(11c)

where contains the vector RBFs,
, , and

...
...

...

The dimension of is , where is the number of
scattering nodes in a local support domain. Since the number of
nodes, , in a local support domain is small, inversion of
can be done without much difficulty with modern computers.
Several observations can be made on the vector basis function

of (11) as follows.
1) The vector basis function can be constructed from the
scalar RBF, , with a 3 3 matrix transform for each
node through (11a).

2) can be any kind of basis function including RBF or
Gaussian function.

3) The shape function satisfies Kronecker’s delta prop-
erty, i.e.,

at other nodes. (12)

4) Each row of is a vectorized basis function: the first
row of , or the first vector in the vector RBF, repre-
sents the component, the second vector (row) the
component, and the third vector the component, re-
spectively.

Expansion of (11) for each node reads

(13)

The curl of can be found as shown in (14) at the bottom
of this page.
For a 2-D problem, fields are assumed constant in the -di-

rection; therefore, . The vector RBFs and their curl

operation are much simplified. More specifically, we have

(15)

and

(16)
Here the scalar RBF is chosen to be

, which results in

(17a)

(17b)
(17c)

(17d)

(17e)

To better understand the vector basis function, we plot a 2-D
vector RBF at using (2) as the scalar basis function
with [16]. Fig. 1 shows the vector RBF in the two di-
mensions. The first vector is the first row of (15) and the second
vector is the second row of (15). It is easy to see that the two
rows of the vector RBF present two mutually orthogonal dipole
modes: Fig. 1(a) is the horizontal dipole mode and Fig. 1(b)
is the vertical dipole mode; rotation of one dipole leads to an-
other. Obviously, both dipole modes are divergence free. Thus,
the field expanded by them should be divergence free.

B. Divergence of the Proposed Vector RBF
Since is constructed from (7) and (8), its divergence should

be zero as implied by (8). We can verify it by directly taking the
divergence of the th row of ,

(18)

where and stand for the other two directions in a Cartesian
coordinate system rather than , and and represents the th
row and th column of .

(14)
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Fig. 1. Plots of the vector RBF modes with . (a) First vector. (b) Second
vector.

C. Divergence Properties of the Scalar RBF

In this section, we examine the divergence properties of the
original meshless method that uses the scalar RBF. As shown
in Section II, the field in the conventional mesheless method is
approximated as

(19)

at each node. Assume that the Gaussian function of (2) is used as
the basis function . The divergence of the approximated field
(19) can then be found as

(20)

It is seen from (20) that the divergence of is dependent on
the position of the point of interest, the nodes, and the expansion
coefficients. There is no guarantee that it will always be zero,
except for the certain point of interest and node distributions that
make (20) zero. In other words, the divergence-free property is
not warranted for the scalar RBF meshless method. This is not
the case for the proposed vector RBFs since they are constructed
through (8), which ensures the divergence property.

IV. PROPOSED MESHLESS FORMULATIONS WITH THE VECTOR
RBF FOR SOLVING ELECTROMAGNETIC PROBLEMS

A. Meshless Formulations

With the definition of the vector basis function and vector
shape function, electrical and magnetic vector field can be ap-
proximated as

(21a)

(21b)

Consider Maxwell’s equations in a linear, isotropic, nondis-
persive, and lossless media/medium of permittivity and per-
meability without sources,

(22a)

(22b)

By substitution of (21) into (22), we have the following equa-
tions:

(23a)

(23b)

Now we choose the collocation method and apply it to the
above equation, i.e., we choose a Dirac Delta function for the
error testing or minimization [4]: test (23a) with Delta functions
at magnetic field nodes, and (23b), with Delta functions at elec-
tric field nodes. Due to the Kronecker’s Delta property of the
vector shape function, we can then obtain the following equa-
tions:

(24a)

(24b)

When the central finite-difference scheme is applied to (24)
in time, the time-marching equation can be obtained,

(25a)

(25b)

Note that the shape functions in the above equations are natu-
rally divergence free.
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Fig. 2. Resonance frequencies obtained with the proposed meshless method
and the FDTD method. The vertical grey lines represent the analytical resonant
frequencies.

V. NUMERICAL EXAMPLES AND DISCUSSION
In this section, a few numerical examples are presented to

verify the divergence properties and accuracy of the proposed
vector RBF based divergence-free meshless method. They are
elaborated below.

A. 1-D Resonator
A1-D resonator with perfect electrical conductor (PEC)walls

at both ends was constructed. The length of the 1-D cavity is 1
m. The current source is located at the center and is specified as

(26)

where GHz, ns, and ns.
Fig. 2 shows the resonator frequencies obtained with the pro-

posed meshless method and FDTD method. Both the uniform
grid size for the FDTD method and the uniform node distance
for the meshless method are 0.01 m; it amounts to ten cells or
ten spatial sampling points per wavelength at 3 GHz across the
whole computation domain. The theoretical resonance frequen-
cies are represented with the vertical lines in the figure. It can
be seen that the results obtained with the FDTD method have
frequency shift towards a higher frequency region even when
ten cells per wavelength is used at 3 GHz. However, the fre-
quencies obtained with the proposed meshless method agree
well with the theoretical results. In other words, the proposed
meshless method has better accuracy than the FDTD method
under the same discretization conditions. This may be attributed
to the fact that the meshless method is essentially a high-order
method while the FDTDmethod expands the field quantity with
the rooftop function [4].

B. Cavity Without and With a Fin
A 2-D cavity with dimensions of 100 cm 100 cm is

considered. A uniform node distance is taken to be 5 cm.
Fig. 3 shows the resonance frequencies obtained from the
conventional RPIM and the proposed meshless method. The

Fig. 3. Resonance frequencies obtained with the proposed meshless method
and the conventional RPIM. The vertical grey lines represent the analytical res-
onant frequencies.

Fig. 4. Geometry of the cavity with PEC screen located at the middle.

vertical dot lines indicate the theoretical results. Although
the same node distribution was employed with the RPIM and
the proposed meshless method, a small frequency difference
from the theoretical results is observed at 0.45 GHz with the
results obtained with the conventional RPIM. For the proposed
meshless method, the results agree well with the theoretical
results.
To verify the divergence properties of the proposed meshless

method based on the vector RBFs, we considered an air-filled
finned cavity with the dimensions of 100 cm 100 cm, as
shown in Fig. 4. It was then discretized with a uniform grid of
20 cells 20 cells and the cell size is 5 cm. Such a discretization
arrangement amounts to 15 sampling points per wavelength at
0.4 GHz. The reason we chose the finned structure is that there
should be strong charge accumulation at the edges of the fins
and no charges is accumulated elsewhere. We can then evaluate
the divergence property of the numerical methods in an effec-
tive way.
A point source of Gaussian pulse as follows was excited in-

side the cavity:

(27)
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Fig. 5. (a) Charge density distribution obtained with the conventional FDTD
method, (b) proposed meshless method based on vector RBFs, and (c) conven-
tional meshless method based on the scalar RBFs at time ns.

where GHz, ns, and ns. The divergence
of electric flux density, i.e., the charge density, was computed
with the following formulas:

(28)

Fig. 5 shows the charge densities computed with the FDTD
method, the proposed vector RBF based meshless method, and
the conventional (or original) scalar RBF meshless method. We
can find that the conventional RPIM does not retain the diver-
gence-free condition. In the source-free region, numerical spu-
rious charges are introduced as shown Fig. 5(c) and they in-
evitably lead to inaccurate or even totally wrong simulation re-
sults. However, the charge distribution computed with the pro-
posed RBF meshless method is similar to that computed with
the FDTD method: at the PEC fins only, we can see the charge
distribution, which is expected due to the fin structure.
To further examine the divergence properties of the proposed

method and the conventional RPIM, we also ran the simulations
when the node distribution is not placed regularly for the finned
structure (equivalent to a nonuniform situation): we slightly

Fig. 6. Node distribution: the left side of the central axis is nonuniform and the
right side is uniform.

Fig. 7. Charge density distribution obtained with the: (a) conventional RPIM
and (b) proposed method.

move the -nodes off their original centers on the left side of
the fin while the right side remains unchanged. The off-central
displacement distance is 0.01 m and the off-central direction
can be randomly chosen in the positive or negative -axis. The
node distributions are shown in Fig. 6.
The charge density obtained with the conventional RPIM and

the proposed method is presented in Fig. 7. It is easy to find that
the charge density obtained from the conventional RPIM does
not maintain the divergence-free property in the source-free re-
gion while the proposed method does. Another interesting ob-
servation is that, in the left region, numerical spurious charge
density is larger than that in the right region with the conven-
tional RPIM. This is due to the fact that the nonuniform node
distribution induces larger spurious charges as implied by (20).
However, with the proposed method, spurious charges are not
present. It shows that the proposed method indeed guarantees
the divergence properties. In other words, numerical examples
verify the theoretical analysis presented in Section III.
It should be mentioned that the above results appear not in

agreement with the numerical results presented in [11] on the
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stability issue. In our simulations, no monomial basis functions
were used and was chosen to be 10. They correspond to small
values of , which caused unstable solutions in the
cases studied in [11]. However, we did run the simulations up
to 1 million iterations and no instability of our solutions was
observed. We can attribute the disagreement to the fact that the
Gaussian RBF, in our cases, is not directly applied to interpolate
or expand the field components, but through the curl operation
of (9) in order to achieve the divergence-free property. As a re-
sult, the numerical findings of [11] may not be the same as those
presented in this paper as they tend to be problem dependent.
Nevertheless, [11] does present valid and useful results in their
cases, and we are currently investigating the stability issue and
finding its solutions in an analytical way for meshelss methods
in general.

VI. CONCLUSIONS

A new vector RBF based meshless method, which is theo-
retically proven to be divergence free, has been proposed for
the transient electromagnetic analysis. Its divergence properties
have been investigated and compared with those of the original
scalar RBF meshless method. It has been found that the scalar
RBFs cannot always retain divergence free in source-free re-
gions while the proposed vector RBF based meshless method
does. Numerical examples have been presented to verify the ac-
curacy and divergence properties of the proposed method.
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