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On the Numerical Dispersion of the Radial
Point Interpolation Meshless Method

Shunchuan Yang, Zhizhang Chen, Fellow, IEEE, Yiqiang Yu, and Sergey Ponomarenko

Abstract—The numerical dispersion of the time-domain radial
point interpolation meshless (RPIM) method is investigated in this
letter. It is found that numerical dispersion relationship of RPIM
method shares the same form as that of a second-order central fi-
nite-difference time-domain method but with the additional factor
introduced by the radial basis functions, when i) the two methods
deploy the same nodal distribution for problem-domain discretiza-
tion and ii) the local support domain of the RPIM method is de-
fined to enclose only four adjacent nodes. Such an observation in-
dicates that the RPIMmethod is amore general method and can be
reduced to the conventional finite-difference time-domain method
under certain conditions. In addition, comparisons between the
meshless method and the finite-difference time-domainmethod are
shown under different conditions.

Index Terms—Finite-difference time-domain (FDTD), meshless,
numerical dispersion, radial point interpolation meshless (RPIM).

I. INTRODUCTION

U NLIKE the conventional grid-based methods such as the
finite-difference time-domain (FDTD) method [1], the

finite element method (FEM) [2] and the moment of method
(MOM) [3], meshless methods interpolate fields to be solved
with the field values at predefined scattering nodes in a support
domain. A set of algebraic equations based on positions of the
scattering nodes in a solution domain is then established and
solved by linear solvers. That means that unlike grid-based
methods, connection information among nodes is not required,
which leads to easy implementation and high flexibility in
modeling complex structures. As a result, the number of the
published reports on the meshless methods for solving electro-
magnetic problems has increased dramatically. In particular,
the smoothed particle electromagnetic method [4] and the radial
point interpolation meshless (RPIM) method [5] have been
proposed. Other forms of the meshless methods including the
leapfrog and alternatively-direction-implicit RPIM methods
in the time-domain are summarized in [6]. However, to the
best of the authors’ knowledge, no numerical dispersion of
the meshless methods has been reported so far. In addition,
no direct relationship between the FDTD method and RPIM
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method have been shown although it is mentioned in [7] that
the RPIM method may reduce to the FDTD method under
certain conditions (but no theoretical proof was given there).
In this letter, we fill in the void by investigating the numerical

dispersion of the RPIMmethod and the relationship between the
RPIM method and the FDTD method in terms of the numerical
dispersion relationship. In addition, we will discuss the relation-
ship between the shape parameter and the numerical dispersion
of RPIM method. Due to limited space, we restrict our studies
to the leapfrog time-domain meshless method.

II. DISPERSION ANALYSIS

To obtain analytical expressions of the numerical dispersion
of the RPIM method, the spectral Fourier transform is applied,
similar to that for the FDTDmethod presented in [8], [9]. For ar-
bitrary numbers and positioning of nodes, numerical dispersion
formulations of the RPIM method may not be practically mean-
ingful due to their varieties used by different users, in addition
to the difficulty in finding the associated formulations. There-
fore, in this letter, we consider the case where the nodes are po-
sitioned in the same grid placement as that in the Yee’s grid for
the conventional FDTDmethod. In other words, in a support do-
main of a node, we consider one field component at one node,
four H-nodes associated with one E-node and four E-nodes as-
sociated with one H-node, in a three dimensional setting. For
the time domain discretization, we use the second-order central
finite-difference scheme for the RPIM method. That means we
can obtain the so-called leap-frog scheme for the time-marching
equations [10].
By applying the spatial Fourier transformation to the mesh-

less time-domain formulations [10], we can obtain the time-
marching equations in the spectral domain. For example, take
component for the illustration purpose. The time-marching

equation for is then

(1)

where is the shape function corresponding to node in the
local support domain. We can express the shape function in the
vector form for all nodes as , where

with the RBF vector and interpolation matrix
. can be expressed as

(2)
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is the maximum radius of the local support domain, which
is taken in such a way that only four nodes are located in the
support domain [10]; is the distance between the two nodes in
the local support domain. Thus, the first order partial derivative
of the RBF vector can be stated as

(3)

where , and and is named as the shape parameter
which can be found in [10]. Thus, the partial derivative of the
shape function with respect to can be obtained as

(4)

By substituting (4) into (1) the following equation is obtained
in the spectral domain:

(5)

Here

and is the spatial frequency in the direction.
Other field components can also be obtained in a similar

manner.
With the similar process as described in [8], [9], the final dis-

persion relationship can be obtained as

(6)

with . Equation (6) looks like the numerical dis-
persion relation of the conventional FDTD method with the ad-
dition of factors on the right hand side.
Noticeably, we can see that when and approaches zeros,

respectively

(7)

and

(8)

The above results mean that the final numerical dispersion (6)
becomes the analytic dispersion, , when
shape parameter , time step and spatial step or distance
between nodes approach to zero. When shape parameter
goes to zero, (6) becomes identical to the dispersion of FDTD
[1]. As a result, the FDTDmethod can be considered as a special
case of RPIM method. This can also be easily seen from (1):
when goes to zero, (4) becomes and by substituting it
into (1), we can obtain the updating formulation for the FDTD.

Fig. 1. NPE of the meshless method with and the FDTD method;
and .

Fig. 2. NPE of the meshless method with and the FDTD method;
and .

III. NUMERICAL RESULTS AND DISCUSSION
The shape parameter plays an important role in RPIM

method. In [11], the relationship between stability of the
time-iteration of RPIM method and the shape parameter is
presented. In this section, we discuss how the shape parameter
affects the numerical dispersion.
To measure the numerical dispersion error, the numerical

phase error (NPE) per unit length is defined and used [8]

(9)

where is the theoretical wave number, is numerical
wave number, is the speed of light in the continuous
medium and is the speed of numerical waves
with the RPIM method. is the angular frequency.
In the calculations

(10)

Here and are the propagation angles in the horizontal and
vertical planes, respectively.
Figs. 1 – 4 show NPE of the meshless method with different

values of shape parameter and that of the FDTD method. The
spatial step is 1/20 of the wavelength, i.e., the spatial sampling
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Fig. 3. NPE of the meshless method with and the FDTD method
with and .

Fig. 4. NPE of the meshless method with and the FDTD method
with and .

is 20 points per wavelength (PPW). equals to the spatial
step. The time step was selected to be the same for both methods
in order to make a fair comparison: it is the maximum time limit
of the FDTD method, or the CFL number is one ( ).
It is easily seen from the figures that when , NPE

of the meshless method reaches its maximum at and
its minimum at . However, for the FDTD method, the
numerical dispersion arrives at its minimum when and
maximumwhen . Therefore, numerical dispersions of the
twomethods show totally different properties but this difference
becomes smaller when shape controlling parameter becomes
smaller.
When , the maximum numerical dispersion errors of

the meshless method is about as seven times of that of the FDTD
method. However, when , the situation reverses: the
maximum numerical dispersion errors are smaller than that of
the FDTD method. When , the numerical dispersion
errors of the two methods becomes similar. When ,
they become indistinguishable. That confirms our previous anal-
ysis result that when approaches to zero, the numerical disper-
sion of the meshless method and the FDTDmethod becomes ex-
actly the same. This indicates that the shape parameter plays
an important role on the numerical dispersion and the conver-
gence of the meshless method to the FDTD method with better

accuracy. Therefore, a reasonable value should be selected in
the practical simulations. It should be also noted that although
better convergence is achieved with small sharp parameter, it
also comes with a smaller number of stable time iterations [11].
The balance should be taken between the stability condition and
the accuracy. In our case study, we chose where the
maximum numerical dispersion errors of RPM method equals
to that of FDTD method. However, the optimized shape param-
eters are on a case-by-case basis; in [12], the authors proposed
an automatic approach to search for the reasonable value with
respect to a specific case.

IV. CONCLUSION

In this letter, numerical dispersion of the RPIM method is
shown and its comparisons with that of the FDTD method are
presented. Analytical derivations show that the numerical dis-
persion of the RPIM method is exactly the same as that of the
FDTD method when the shape parameter approaches zero. It
indicates that the meshless method is a general method which
can include the conventional FDTD method as its special case.
Different numerical dispersion results based on various shape
parameters are illustrated. The analysis shows that shape param-
eter should be selected carefully in the practical simulations to
obtain small numerical dispersion errors and good stability.
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