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We introduce a class of partially coherent temporal/spatial sources, optical coherence gratings/lattices that have a
Gaussian intensity profile and statistically stationary/homogeneous, periodic temporal/spatial coherence proper-
ties. We show that temporal coherence gratings generate partially coherent pulses with periodic spectra, whereas
spatial coherence lattices yield far-zone output in the form of periodic lattices of highly directional beams. © 2014
Optical Society of America
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Diffraction gratings; (320.5550) Pulses.
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There has lately been growing interest in designing novel
partially coherent optical sources catering to a multitude
of applications to optical communications, image trans-
fer, and optical lithography, among others. Until recently,
there have been knownonly a fewclasses of such sources,
either spatial or temporal. Indeed, apart from seminal
Gaussian Schell-model sources [1], only a few other
classes emerged for which closed-form analytical expres-
sions for their cross-spectral densities or two-time corre-
lation functions can be obtained. Twisted Gaussian
Schell-model sources [2],which canbe represented viz co-
herent mode decompositions of either Hermite–Gaussian
[3] or Laguerre–Gaussian [4]modes, Bessel-correlated [5],
modified-Bessel-correlated sources, generating partially
coherent vortex fields [6], as well as dark and antidark
diffraction-free sources [7], comprised all such known
classes until late. All just mentioned partially coherent
sources were either constructed or analyzed theoretically
using the classic coherent mode representation of optical
coherence theory [1]. Some such sources have also been
experimentally realized to date [8,9].
The introduction of a general representation for parti-

ally coherent sources, ensuring the generated fields to
have bona fide correlation properties, has given new im-
petus to the field [10]. A multitude of partially coherent
spatial and temporal sources were devised using the
prescriptions of [10], including Gaussian sources with
nonuniform correlations [11], flat-top field generating
sources [12], Bessel– and Laguerre–Gaussian [13], circu-
lar cosine–Gaussian [14,15], rectangular multi-Gaussian
[16], temporal sources with tunable coherence profiles
[17], and difference-Gaussian [18] Schell-model sources.
In addition, new independent-elementary-source decom-
position [19] and complex Gaussian representation
(CGR) [20] were introduced. While being particular forms
of [10], the novel representations nonetheless open up
alternative avenues for partially coherent source design.
In particular, the CGRwas shown to provide a convenient
vehicle to devise trains of partially coherent pulses [20].
Moreover, due to over-completeness of the CGR modes,
any partially coherent source has a CGR as was shown in
[20]. Yet, theCGRpower for newpartially coherent source
synthesis has barely been explored to date.
In this work, we employ the CGR to construct wide

classes of temporal and spatial partially coherent sources

that we term optical coherence gratings and lattices. All
novel sources generate either statistically stationary
pulses or statistically homogenous beams with Gaussian
intensity profiles in the source plane. Thus, they are all
of a Schell-model type. Yet, their coherence properties
are periodic in time or space, and hence the name optical
coherence gratings or lattices. In the temporal case,
novel sources generate periodic trains of quasi-
monochromatic components. In the spatial case, the
novel sources give rise to periodic arrays of highly direc-
tional beams in the far zone of the source. The discovered
sources can find applications to optical imaging with par-
tially coherent light, optical information transfer through
natural environments, where partially coherent pulses/
beams are more robust in presence of media fluctuations
and to optical lithography, to name but a few.

Temporal coherence gratings: According to the CGR, a
two-time correlation function of any partially coherent
source can be represented as [20]:
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where α # Re α% i Im α is a complex variable;
d2α ≡ Re α Im α, P!α" is a nonnegative function to guaran-
tee nonnegative definiteness of Γ [1,10,20]. Hereafter, we
will use dimensionless time and frequency variables, T #
t∕τp and Ω # ωτp, where τp is a temporal width of the
pulse, and assume any time variables to be scaled to
τp. In the dimensionless variables, complex Gaussian
modes,
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form an overcomplete, complete but nonorthogonal, set
such that
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As was discussed in detail elsewhere [20], the complex
variable α incorporates time delays and frequency shifts
of constituting Gaussian pulses.
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Let us restrict ourselves to source classes for which
the distribution function P has the form
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It then follows from Eqs. (1) and (4) that
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We note that Eq. (5) is in the form of pseudo-mode ex-
pansion discussed in [21], and νn characterizes energy
distribution among the pseudo-modes.
A particularly interesting family of partially coherent

Schell-model sources arises with the choice
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implying that there is no time delay, but consecutive
Gaussian modes have equal relative frequency shifts. It
follows from Eqs. (2), (5), and (6), after elementary alge-
bra, that each such source has a Gaussian intensity,
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and its temporal degree of coherence, defined as [1]
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can be expressed as
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We can infer from Eq. (9) that (i) discovered optical
coherence gratings are statistically stationary and
(ii) their coherence properties are time-periodic with a
characteristic period of a (in scaled variables).
The energy spectrum, defined as [22]
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reveals energy distribution among monochromatic com-
ponents of the source. It follows from Eqs. (8)–(10) after
straightforward algebra that up to an immaterial factor,
energy spectra of novel sources are given by
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It is a periodic Gaussian frequency comb with distinct
quasi-monochromatic components that fail to overlap for
a sufficiently small period a of the coherence grating.
Quantitative features of discovered coherence gratings

and resulting statistical frequency combs depend on the
mode energy distribution νn. Consider, for instance, a

grating of finite number N of equally weighted complex
Gaussians with νn # ν # const. Such a distribution yields
a closed-from expression for γ such that
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which is displayed in Fig. 1 for two values of N . For large
enoughN , Eq. (12) is reminiscent of a classic pattern gen-
erated by illuminating a diffraction grating with a coher-
ent plane wave in the far zone of the grating [23]. A quick
glance at Fig. 1(b) confirms the conclusion. The corre-
sponding energy spectrum is exhibited in Fig. 2. It is
clearly seen in the figure that the spectrum represents
a periodic train of quasi-monochromatic components,
provided the number of coherence grating lobes is suffi-
ciently large, N ≫ 1, and their period sufficiently small,
a < 1.

Another instructive example is furnished by an infinite
number of CGs weighted according to νn # λn∕n! where
λ > 0 is a free parameter. The corresponding temporal
degree of coherence sums to
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We show the temporal degree of coherence and energy
spectrum in Fig. 3. It is seen in the figure that this source
possesses diffraction grating-like coherence properties
resulting in a periodic energy spectrum as well. Unlike
the case in Fig. 2, however, the spectral train is amplitude
modulated here. Owning to qualitative agreement be-
tween the two cases, we can conclude that the whole
class of sources, specified by (9), gives rise to optical
coherence gratings.

Spatial coherence lattices: A 2D generalization of the
above describes spatial sources producing random
beams. In the space-frequency representation, we seek
the cross-spectral density of a beam field ensemble at
a pair of points ρ1 and ρ2 in the source plane in a factor-
ized form
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Y

s#X;Y
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Fig. 1. Modulus of the temporal degree of coherence given by
Eq. (12) for (a) N # 2 and (b) N # 20.
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Here X # x∕σI, Y # y∕σI are dimensionless Cartesian
coordinates scaled to an arbitrary spatial scale in the
transverse pane of the beam; all spatial scales are as-
sumed to benormalized to σI henceforth. As itwill become
clear in the following, σI does in this case coincidewith the
rms width of the source intensity profile. By analogy with
the temporal case, each factor in the cross-spectral den-
sity product (14) can be expressed in terms of pseudo-
modes as
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It follows at once from thedefinition of the spectral degree
of coherence [1,24] that
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Equations (15)–(17), and a 2D analog of (6) yield a
Gaussian source intensity profile,
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2%Y 2"; (18)

justifying the identification of the scaling length with the
rms sourcewidth, and the source coherence pattern in the
form
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In particular, the spectral degree of coherence
magnitude of an optical lattice with νns

# ν # const,
0 ≤ ns ≤ N , can be written explicitly as
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To illustrate the spectral degree of coherence behav-
ior, we display in Fig. 4, jμj for a spatial coherence lattice
composed of N # 20 equally weighted Gaussian beams
with the lattice aspect ratio aX∕aY # 0.7. The lattice-like
coherence behavior is transparent from the figure.

The far-field angular distribution, generated by new
sources, is specified by the radiant intensity J which
can be expressed in the paraxial approximation as [1]
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Z
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where k is a 2D wave vector in the transverse plane of the
source. Owning to a mathematical analogy between
Eqs. (10) and (21), the radiant intensity distribution of
a spatial coherence lattice can be expressed as
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where KX;Y # kx;yσI. The radiant intensity is displayed in
Fig. 5 in arbitrary units assuming the same weight distri-
butions for the modes in the X and Y -directions,
νnX

# νnY
# λnX;Y∕nX;Y !. For sufficiently small lattice

constants aX;Y that we used, the angular distribution

Fig. 2. Energy spectrum in arbitrary units for the case of N #
20 equally weighted modes with the period a # 0.25.

Fig. 3. Magnitude of the temporal degree of coherence (a) and
the energy spectrum in arbitrary units (b) for the case when the
modes are distributed according to νn # λn∕n! with λ # 5 and
a # 0.25.

Fig. 4. Magnitude of the spectral degree of coherence for a
spatial coherence lattice composed of N # 20 equally weighted
modes; the aspect ratio of lattice constants, aX∕aY # 0.7.
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of the source radiation pattern is seen in the figure to be
an amplitude-modulated periodic lattice of highly direc-
tional individual lobes.
In summary, we introduced novel classes of partially

coherent Schell-model spatial and temporal sources.
New temporal sources, temporal coherence gratings,
have Gaussian intensity profiles and periodic coherence
properties, yielding periodic energy spectra in the form
of frequency combs. New spatial sources, spatial coher-
ence lattices, also have Gaussian intensity profiles and
lattice-like spectral degrees of coherence. The latter cir-
cumstance causes them to generate lattice-like radiation
patterns composed of highly directional individual lobes.
Temporal coherence gratings and induced frequency
combs can find metrology and optical communications
applications. Spatial coherence lattices can be used for
material processing, robust (speckle-free) imaging with
partially coherent light, and distortion-less information/
image transfer through fluctuating natural environments
such as the turbulent atmosphere.
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