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Abstract: We examine paraxial propagation of recently introduced optical
coherence lattices in free space and demonstrate a novel phenomenon of
periodicity reciprocity between their intensity and coherence properties.
The periodicity reciprocity arises because an aperiodic source intensity
profile of an optical coherence lattice evolves into a lattice-like far-field
profile, while the periodic spectral degree of coherence at the source be-
comes aperiodic on free-space propagation. We discuss how the discovered
periodicity reciprocity can make optical coherence lattices attractive for
robust free-space optical communications.
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1. Introduction

Owning to the immunity of partially coherent beams to speckle formation in optical imag-
ing and their robustness to natural media fluctuations, research into optical communications
with partially coherent light has recently enjoyed a renaissance. In particular, the potential
of propagation-invariant (diffraction-free) coherent and partially coherent beams and pulsed
beams for distortion-less free-space information/image transfer applications has been recog-
nized [1, 2]. Moreover, special classes of diffraction-free partially coherent beams, such as
dark diffraction-free beams [3], can serve as versatile optical traps for neutral nano-particles or
even atoms. Shape-invariant (self-similar) partially coherent beams can also be useful in free-
space speckle-free image transfer and free-space optical communications. Several prominent
classes of self-similar partially coherent beams have been discovered to date, including Gaus-
sian Schell-model [4, 5], and twisted Gaussian Schell-model [6–8] beams. By the same token,
partially coherent modified-Bessel vortex beams [9], separable vortex beams [10] as well as
some others [11] are shape invariant because they admit a coherent-mode decomposition [12]
in terms of self-similar Laguerre-Gaussian [9, 10] or Hermite-Gaussian [11] modes.

Although non-shape-invariant partially coherent beams are fairly useless for optical commu-
nication applications, they can possess desirable attributes for far-field coherence or radiation
pattern generation on demand. For instance, while J0-correlated partially coherent beams have
drastically evolving coherence properties on free-space propagation [13, 14], various families
of multi-Gaussian Schell-model beams can either form a flat-top radiation pattern [15] or split
on propagation [16]. On the other hand, non-uniformly correlated Gaussian beams can have
their peak intensity positions shift upon free-space propagation [17]. Some non-shape-invariant
partially coherent beams were shown to form stable structures on short-distance propagation
through the turbulent atmosphere [18–20].

Partially coherent beams with periodic cross-spectral densities present yet another important
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class. The significance of such beams for imaging is revealed by the existence of Lau [21, 22]
and Talbot [22–27] self-imaging effects for partially coherent light. In the first instance, self-
imaging arises on paraxial propagation of light generated by completely incoherent sources
with periodic intensity profiles. In the second instance, though, the periodicity of scalar cross-
spectral densities [22,23,25,26] or cross-spectral density tensors [27] for polarized or partially
polarized sources, respectively, is required for self-imaging. Lately, a new class of partially co-
herent beams, optical coherence lattices (OCL), was introduced [28] using recently developed
complex Gaussian representation (CGR) of statistical pulses and beams [29]. The newly discov-
ered OCLs have aperiodic (Gaussian) intensity profiles and statistically homogeneous, periodic
coherence properties, precluding Talbot self-imaging in free space. The natural question then
arises: Can OCLs be useful for optical imaging, communications, or information transfer?

To address this issue, we examine free-space evolution properties of OCLs in this work. In
particular, we explore how the intensity profile and spectral degree of coherence of an OCL
change on paraxial propagation. We discover periodicity reciprocity between the intensity and
coherence properties of optical coherence lattices. The new phenomenon manifests itself when
an aperiodic, Gaussian intensity profile of the source evolves into a periodic array of lobes in
the far zone, whereas the initially periodic spectral degree of coherence loses its periodicity on
lattice propagation. Thus, the spectral degree of coherence periodicity at the source is trans-
ferred to the far-field intensity profile periodicity. We suggest that the phenomenon can find
applications to robust free-space optical communications.

2. Problem formulation and preliminary analysis

We begin by recalling that the cross-spectral density of a beam field ensemble of recently dis-
covered [28] optical coherence lattices at a pair of points (X1,Y1) and (X2,Y2) in the source
plane can be expressed in a factorized form as

W (X1,Y1,X2,Y2,0) = ’
s=X ,Y

W (s1,s2,0). (1)

Here X = x/sI, Y = y/sI are dimensionless Cartesian coordinates scaled to the rms width sI of
the source intensity profile and we will drop an irrelevant dependence of the cross-spectral den-
sity on frequency henceforth. Using the CGR of statistical beams [29], each factor W (s1,s2,0)
can be expressed as

W (s1,s2,0) =
Z

d2a Ps(a)y⇤
a(s1,0)ya(s2,0), (2)

where Ps is a nonnegative distribution function to guarantee non-negative definiteness of W
and d2a ⌘ d(Rea)d(Ima). The pseudo-modes {ya(s,0)} are normalized,

Z
dsy⇤

a(s,0)ya(s,0) = 1, (3)

and form an over-complete set such that
Z

d2a y⇤
a(s1,0)ya(s2,0) = d (s1 � s2). (4)

In the OCL case [28], Ps has the form

Ps(a) = Â
ns

nns d (a �ans), nns � 0. (5)
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On substituting from Eq. (5) into (2), we arrive at a pseudo-mode expansion of W (s1,s2,0) in
the form

W (s1,s2;0) = Â
ns

nnsy⇤
ans

(s1,0)yans (s2,0). (6)

Here the mode weight distributions nns specify the intensity associated with each mode and

ans =
ipns

as
p

2
, (7)

where as is a (dimensionless) lattice constant in the s-direction and ns is an integer. Each lattice
pseudo-mode at the source can be expressed as

yans (s,0) =
e�(Imans )

2

p1/4 exp

"
� (s�

p
2ans)

2

2

#
. (8)

Next, let us recall that the cross-spectral density function of any partially coherent beam
ensemble, propagating in free space, obeys the paraxial Wolf equation [12] which we re-write
in the dimensionless form as

(2i∂Z +—2
?2 �—2

?1)W (X1,Y1,X2,Y2;Z) = 0. (9)

The dimensionless propagation distance Z is naturally measured in Rayleigh range units zR
corresponding to a fully coherent source of the width sI, zR = ks2

I . Owning to the separability
of Eq. (9) in the Cartesian coordinates, we can factorize W in any transverse plane Z = const >
0, i. e.,

W (X1,Y1,X2,Y2;Z) = ’
s=X ,Y

W (s1,s2;Z), (10)

where each factor can be expanded into the pseudo-modes as

W (s1,s2;Z) = Â
ns

nns y⇤
ans

(s1,Z)yans (s2,Z). (11)

On substituting from Eqs. (10) and (11) and separating spatial variables in the transverse plane,
we obtain a paraxial wave equation for each pseudo-mode as

(2i∂Z +∂ 2
s )yans (s,Z) = 0. (12)

The appropriate solution to Eq.(12), subject to the initial condition at the source (8), can be
obtained in the form

yans (s,Z) =
e�(Imans )

2

p1/4(1+ iZ)1/2 exp

"
� (s�

p
2ans)

2

2(1+ iZ)

#
. (13)

It follows from Eqs. (11) and (13), after elementary algebra, that the cross-spectral density of
an optical lattice in any transverse plane Z = const is given by Eq. (10) with

W (s1,s2;Z) =
exp

h
i(s2

2�s2
1)

2R(Z)

i

p
p(1+Z2)

Â
ns

nns exp
⇢

ipns

as


s2 � s1

s2(Z)

��

⇥ exp

� (s1 �pnsZ/as)2 +(s2 �pnsZ/as)2

2s2(Z)

�
. (14)
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In Eq. (14), R(Z) and s(Z) are dimensionless radius of the curvature and rms width of the beam
specified by the expressions

R(Z) = Z +1/Z, s(Z) =
p

1+Z2. (15)

In particular, the intensity profile of an OCL field can be found as

I(X ,Y ;Z)⌘ ’
s=X ,Y

W (s,s;Z) =
1

p(1+Z2) ’
s=X ,Y

Â
ns

nns exp

� (s�pnsZ/as)2

s2(Z)

�
. (16)

A qualitative analysis of Eq. (16) indicates that an initially Gaussian beam starts branching
out into a Gaussian lattice with the individual Gaussian node intensities decreasing in ampli-
tude on propagation. Further, each Gaussian spreads and the distance between the adjacent
lattice nodes increases. Over several Rayleigh distances, the rates of node width spreading and
adjacent node separation are both proportional to Z. However, the latter exceeds the former,
provided the lattice constant is small enough, aX ,Y  p . Under the circumstances, the struc-
tural stability of the lattice is no longer compromised. Otherwise, individual lattice nodes can
start overlapping over a certain propagation distance, resulting in annihilation of the overall
beam lattice structure. Hereafter, we will restrict our analysis to OCLs maintaining their lattice
structure in the far-zone due to their potential for free-space optical communications.

Fig. 1. Intensity profile (in arbitrary units) of a uniformly distributed OCL for several prop-
agation distances Z. The lattice is composed of N = 10 lobes and the lattice constant is
a = 1.
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The spectral degree of coherence behavior follows from its definition [12, 30, 31]

µ(X1,Y1,X2,Y2;Z) =
W (X1,Y1,X2,Y2;Z)p

I(X1,Y1;Z)
p

I(X2,Y2;Z)
, (17)

together with Eqs. (10), (14) and (16). According to the van Cittert-Zernike theorem of the
optical coherence theory [32], the lattices must become progressively more coherent on free-
space propagation. In the following section, we illustrate the evolution of lattice intensity and
spectral degree of coherence for several nontrivial cases.

3. The OCL intensity and spectral degree of coherence propagation in free space

Fig. 2. Magnitude of the spectral degree of coherence of a uniformly distributed OCL for
several propagation distances Z. The lattice is composed of N = 10 lobes and the lattice
constant is a = 1.

We first consider an OCL composed of a finite number N of uniformly distributed complex
Gaussian pseudo-modes such that

nnX = nnY = n0 = const; 0  nX ,Y  N. (18)

Under these conditions, the lattice intensity profile and spectral degree of coherence at the
source can be evaluated in closed forms as [28]

I(X ,Y,0) µ e�(X2+Y 2), (19)
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Fig. 3. Intensity profile (in arbitrary units) of a symmetric, non-uniformly distributed OCL
for several propagation distances Z. The the lattice constant is a = 1 and the weight dis-
tribution parameter is l = 5.

up to an immaterial constant, and

|µ(X1,Y1,X2,Y2;0)|=

�����
sin

⇥pN
2a (X2 �X1)

⇤
sin

⇥pN
2a (Y2 �Y1)

⇤

N2 sin
⇥ p

2a (X2 �X1)
⇤

sin
⇥ p

2a (Y2 �Y1)
⇤
����� , (20)

respectively. In deriving Eq. (20) we assumed, for simplicity, that the lattice constants in the X-
and Y -directions are the same, aX = aY = a.

Let us now display the behavior of the intensity and magnitude of the spectral degree of co-
herence of the lattice on its evolution with Z according to Eqs. (14) through (17). The intensity
evolution is exhibited in Fig. 1, while the modulus of the spectral degree of coherence is shown
in Fig. 2.

As can be inferred from Fig.1, an originally aperiodic in intensity Gaussian beam forms a
lattice on propagation. In accord with the above qualitative analysis after the intensity lattice
has been formed, the lattice structure of the OCL remains intact, provided the lattice constant
is not too large. The subsequent propagation into the far zone causes the lattice to expand and
the individual node intensity maxima to decrease. The more-or-less stable lattice structure is
formed over the Rayleigh range.

A quick look at Fig. 2 prompts the conclusion that the lattice structure of the source degree
of coherence is destroyed on propagation, yielding an aperiodic spectral degree of coherence
with the portion of the beam having |µ| = 1 gradually increasing on propagation. Thus, the
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Fig. 4. Magnitude of the spectral degree of coherence of a symmetric, non-uniformly dis-
tributed OCL for several propagation distances Z. The lattice constant is a = 1 and the
weight distribution parameter is l = 5.

OCLs become progressively more coherent in agreement with the van Cittert-Zernike theorem.
More instructively, however, we observe a curious reciprocity between the periodicity of OCL
intensity and spectral degree of coherence. Indeed, while each lattice source has an aperiodic
(Gaussian) intensity profile and a periodic spectral degree of coherence, a periodic intensity
profile and aperiodic spectral degree of coherence emerge in the far zone of the source. We can
conclude that, at least for uniformly distributed OCLs, the periodicity is transferred from the
degree of coherence at the source to the far-field intensity.

To determine whether the discovered periodicity reciprocity is generic to OCLs, we will
examine non-uniformly distributed OCL propagation. To this end, we consider an OCL with a
nonuniform distribution of pseudo-modes as

nns = A
l ns

s
ns!

; ns � 0, (21)

where A is a positive constant. The corresponding source intensity is again Gaussian and the
spectral degree of coherence at the source can be inferred from the Eqs. (14) through (17) as
well as (21) such that

|µ(X1,Y1,X2,Y2;0)|= exp

(
�2 Â

s=X ,Y
ls sin2


p(s2 � s1)

2as

�)
. (22)

We can then display the nonuniform OCL intensity and spectral degree of coherence behavior
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in Figs. 3 and 4. We assume, for simplicity, that the lattices are symmetric with aX = aY = a
and identically distributed along the X- and Y -axes such that lX = lY = l .

Figures 3 and 4 reveal the same key trends as do Figs. 1 and 2. Namely, the initially aperiodic
source intensity profile gives rise to a periodic lattice and the initially periodic source spectral
degree of coherence evolves into an aperiodic one. Thus, periodicity reciprocity is confirmed
for non-uniformly distributed lattices as well and hence it appears to be a generic property of
discovered OCLs. The only qualitative difference in the evolution of nonuniform from uni-
form OCLs, which is manifest on comparing Figs. 1 and 3, appears to be the intensity profile
modulation of the former caused by a nonuniform distribution of their pseudo-modes.

4. Conclusions

In this work, we have explored the intensity and spectral degree of coherence evolution of re-
cently introduced optical coherence lattices. We have shown that while an aperiodic source
intensity profile of an OCL–which always happens to be Gaussian–develops spatial periodicity
on paraxial propagation in free space, the initially lattice-like spectral degree of coherence loses
its spatial periodicity on OCL propagation. Thus, the OCL periodicity has a reciprocity prop-
erty: coherence-periodic OCLs at the source give rise to intensity-periodic far-field patterns.
The discovered OCL periodicity reciprocity is shown to be generic for OCLs and it can be
utilized in robust free-space optical communications. Indeed, specific information, encoded in
an OCL via the periodicity of its spectral degree of coherence at the source, can be transmitted
through a free-space link. The periodicity reciprocity of OCLs ensures that the encoded infor-
mation is contained in the OCL far-field intensity pattern. The information can then be decoded
by simply interrogating the OCL far-field intensity profile at the receiver.
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