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We demonstrate that partially coherent light beams of arbitrary intensity and spectral degree of coherence profiles
can self-image in linear graded-index media. The results can be applicable to imaging with noisy spatial or temporal
light sources. © 2015 Optical Society of America
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Imaging has been a prominent subject in optics and op-
tical engineering for quite some time. Optical imaging is
typically classified as coherent or incoherent depending
on the coherence properties of a light source [1]. The
term incoherent imaging is usually employed in situa-
tions where light sources are quite noisy so that the re-
sulting electromagnetic fields possess random phases.
Hence, one can describe the imaging process only in
terms of appropriate second-order correlation functions
of the (partially coherent) fields [2].
Although it is customary to employ optical instruments

such as lenses, microscopes, telescopes etc. to ensure
image formation [3], under certain conditions the proper-
ties of optical fields are conducive to light self-imaging
even in the absence of any devices. In particular, trans-
verse periodicity of coherent optical fields at the source
gives rise to longitudinal periodicity on free-space propa-
gation of the fields, which constitutes the Talbot effect
[4]. Ever since its discovery, the Talbot effect has gener-
ated a flurry of research activity, both fundamental and
applied, in the field of coherent optics [5–13]. Whenever
optical sources are partially coherent, Talbot self-
imaging can also occur for periodic source cross-spectral
density functions or tensors, depending on whether the
sources are completely or partially polarized [14–20]. In
addition, partially coherent sources may have aperiodic
intensity profiles and periodic coherence properties as,
for instance, do recently introduced optical coherence
lattices [21]. Although Talbot self-imaging is precluded
for such sources, they can be attractive for free-space op-
tical communications due to the discovered phenomenon
of periodicity reciprocity: optical coherence lattices give
rise to periodic angular-intensity distributions in the far
zone concurrently with losing their coherence periodicity
on free-space propagation [22].
We stress that, in general, the source intensity as well as

the spectral degree of coherence periodicity are required
for self-imaging. It will then be instructive to inquire
whether self-imaging can be realized in an optical medium
without any conditions on the source field and without
relying on any imaging devices. We point out in this con-
text that Talbot imaging of certain kinds of fully [23] and
partially [24,25] spatially coherent sources in linear
graded-index (GRIN) media were previously discussed.
In this Letter, we address this issue by showing that

perfect self-imaging of any source field, regardless of

its periodicity and its state of coherence, is indeed pos-
sible in a GRIN medium at certain distances away from
the source. Our results can find applications in imaging
with partially coherent spatial sources in free space or
bulk optical media or with noisy pulses in optical fibers.

We consider a planar paraxial source, assuming it to be
one-dimensional, for simplicity. We can then explore the
generated beam propagation in a GRIN slab with the
refractive index

n!x" # n0 − n1x2; (1)

where n0 is a refractive index on an axis of the system
and n1 (n1 ≪ n0) characterizes the rate of refractive in-
dex variation in a plane transverse to the axis. In this
work, we assume that the GRIN medium is focusing with
n1 > 0. We mention in passing that linear GRIN variation
has also been shown to play an important role in the non-
linear regime of beam/pulse propagation by qualitatively
altering such fundamental aspects as spatiotemporal
field collapse [26,27] and soliton and self-similar non-
linear wave propagation in defocusing nonlinear GRIN
media [28–30].

Hereafter, it will prove advantageous to introduce the
following dimensionless variables

X # x∕σ and Z # z∕LD: (2)

Here

σ # n−1∕2
1 ; LD # k∕n1; (3)

where k # ω∕c is a wave number corresponding to the
carrier frequency ω of the source. We are now in a posi-
tion to make our key assertion.

Proposition. A beam of arbitrary-intensity profile
and state of coherence can undergo self-imaging in a
linear graded-index medium; perfect source images
are formed at the distances that are multiple integers
of 2πLD.

Proof. We begin by recalling that the cross-spectral
density function of any beam ensemble at a pair of points
X1 and X2 in any transverse plane Z # const > 0 can be
expressed in terms of the complex Gaussian representa-
tion (CGR) as [31]
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W!X1; X2; Z" #
Z

d2αP!α"ψ$
α!X1; Z"ψα!X2; Z": (4)

Here α # Reα% i Im α is a complex variable, and
d2α ≡ d!Re α"d!Im α", P!α" is a nonnegative distribution
function to ensure non-negative definiteness of W [2,31].
Each complex Gaussian mode (CGM) field at the

source can be expressed as

ψα!X; 0" #
e−!Im α"2

π1∕4
exp

!
−

"
X −

###
2

p
α
$2

2

%
: (5)

The CGMs are normalized,

Z
dX jψα!X; 0"j2 # 1; (6)

and form an overcomplete set such that

Z
d2αψ$

α!X1; 0"ψα!X2; 0" # δ!X1 − X2": (7)

Each CGM field obeys the paraxial-wave equation writ-
ten in dimensionless variables as

&
i∂Z %

1
2
∂2X −

1
2
X2

'
ψα!X; Z" # 0: (8)

We will now employ a mathematical equivalence be-
tween the CGM mode propagation in a GRIN medium
and a quantum harmonic oscillator evolution. To this
end, let us observe that the CGM field can be thought of
as the coordinate representation of a ket vector jα; Zi in
the Hilbert space such that ψα!X; Z" # hXjα; Zi; the
source CGM is just a coherent state of a quantum har-
monic oscillator, jα; 0i ≡ jαi, as was shown in [31]. The
mode propagation equation can then be cast into the
form of the Schrödinger equation for jα; Zi as

!i∂Z − Ĥ"jα; Zi # 0; (9)

where the propagation distance Z plays the role of time,
and Ĥ # −

1
2 ∂

2
X % 1

2X
2 is an analog of the quantum har-

monic oscillator Hamiltonian. Proceeding with our quan-
tum-oscillator analogy, we introduce the eigenstates of
Ĥ, viz.,

Ĥjni #
&
n%

1
2

'
jni; (10)

where n is an integer.
As is well known [32], the coherent state can be ex-

panded in a complete set of the oscillator eigenstates as

jαi # e−jαj
2∕2

X∞

n#0

αn#####
n!

p jni: (11)

By formally integrating Eq. (9), we obtain the CGM
propagation law in the form

jα; Zi # e−iĤZ jαi: (12)

It then follows from Eqs. (10)–(12) that the CGM
evolution with the propagation distance is governed by

jα; Zi # e−iZ∕2jαe−iZi; (13)

or, projecting back into the coordinate representation,
we arrive at

ψα!X; Z" # π−1∕4e−iZ∕2 expf−&Im!αe−iZ"'2g

× exp
!
−

"
X −

###
2

p
αe−iZ

$2

2

%
. (14)

It can be inferred from Eq. (14) that each CGM main-
tains its overall shape, but its amplitude is scaled by e−iZ∕2
and its complex displacement oscillates periodically with
propagation distance α!Z" # αe−iZ . It then follows from a
quick analysis of Eqs. (4) and (14) that the cross-spectral
density of any source is self-imaged over multiple inte-
gers of the distance zSI # 2πLD in dimensional variables.
This completes our proof.

As an example, let us consider a Gaussian Schell-
model (GSM) source with a cross-spectral density of
the form

W!X1; X2; 0" # I0e−!X
2
1%X2

2"∕2 exp
!
−

!X1 − X2"2

2ξ2c

%
: (15)

Here I0 is a peak intensity of the source, ξc # σc∕σ,
where σc is a transverse coherence length of the source,
and we assumed, for simplicity, that the rms source width
σp is equal to the characteristic GRIN scale σp # σ.
Introducing the notation,

α #
1###
2

p !u% iv"; (16)

the CGR weight distribution in this case is known as [31]

P!α" ≡ P!u; v" # I0ξcδ!u"e−ξ
2
cv2∕2: (17)

It then follows by substituting from Eqs. (14)–(17) into
Eq. (4) after some straightforward algebra that the cross-
spectral density of the beam in a transverse plane Z #
const ≥ 0 is given by

W!X1; X2; Z" #
I0ξc###########################

ξ2c % 2 sin2 Z
p exp

&
−

X2
1 % X2

2

2

'

× exp
!
−

!X1eiZ − X2e−iZ"2

2!ξ2c % 2 sin2 Z"

%
: (18)

We can infer by comparing Eqs. (15) and (18) that at
Z # πm, m # 0;(1;(2;…, the GSM source self-images
by replicating its cross-spectral density. We note that in a
more general case, σp ≠ σ, both the intensity and spectral
degree of coherence [33] of a generated GSM beam
change with the propagation distance inside GRINmedia.
However, it can be shown explicitly that, in accordance
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with our proposition, the source cross-spectral density
periodically replicates itself.
We remark that although we have so far limited our-

selves to a !1% 1"D spatial case, the extension to two
transverse dimensions is straightforward. The GRIN
medium refractive index can then be generalized to

n!x; y" # n0 − n1!x2 % y2": (19)

Because of the CGM-evolution-equation separability in
such a medium in the Cartesian coordinates, we can fac-
torize the source cross-spectral density as we did for op-
tical coherence lattices [21,22] and prove self-imaging
can happen, literally following our line of argument for
each factor.
More instructively, though, the proven self-imaging can

occur for pulses of any degree of temporal coherence
propagating in optical fibers. The GRIN effect can be
realized in the temporal domain by utilizing the quadratic
electro-optical effect in a Kerr cell inside a fiber and vary-
ing a low-frequency voltage across the cell linearly in
time [34]. As a result, the refractive index will vary
quadratically in time. The straightforward extension of
a familiar space–time analogy between partially coherent
beam propagation in free space and partially coherent
pulse propagation in homogeneous, linear fibers [35]
to the GRIN case will ensure self-imaging of noisy pulses
as well. Thus, our findings can contribute to the thriving
field of temporal imaging in fiber optics [36].
In summary, we have shown that self-imaging can oc-

cur for spatial or temporal sources of arbitrary-intensity
distribution and state of coherence in GRIN linear
media or noninstantaneous fibers with a quadratic time
response. Perfect self-images of the second-order-
correlation properties take place at distances that are
multiple integers of a characteristic medium period.
Our results shall be useful for spatial imaging with par-
tially coherent light in waveguides or bulk media or for
temporal imaging with fluctuating pulses in optical fibers.
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