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We study effective spatial and angular correlations in beams of any state of spatial coherence, and we introduce

a phase-space product, @, which takes these correlations into account.
to reduce to the conventional beam-quality factor M? when the beam is spatially fully coherent.

This phase-space product is shown
We also

determine the lower bound for the value of @ and demonstrate that it is attained for all Gaussian Schell-model

beams. © 2001 Optical Society of America
OCIS codes: 030.0030, 030.1640, 140.3300.

The characterization of beams of an arbitrary profile
and any state of spatial coherence has been an impor-
tant issue in the design of laser devices. The current
interest in this subject stems from the discovery that
on propagation through the atmosphere, a partially co-
herent beam is less affected by turbulence than is a
fully coherent beam.! This interest has been further
stimulated by the advances in development of partially
coherent light sources such as diode lasers and, more
recently, superluminescent diodes.? In this context, it
is desirable to generate partially coherent beams of a
relatively small effective cross section of the beam in
the source plane and a small effective angular diver-
gence of the beam. The question then arises as to how
one can introduce a suitable phase-space measure for
such beams.

To date, a number of papers have been published
that deal with the second-order moments of the spa-
tial and angular intensity distributions of partially
coherent beams (see, for example, Refs. 3—13). A pos-
sible choice for the appropriate phase-space product of
a beam, which involves the second-order moments of
the Wigner distribution function, has been introduced
and measured.* Later, the term M? quality factor for
this product was coined by Siegman.!* However, the
beam cross section in the source plane has been gener-
ally introduced in terms of a second-order moment of
the intensity distribution.®~13 Defined this way, the
cross section is independent of the coherence proper-
ties of the source. In order to examine the influence
of the state of coherence of the source on the value
of the phase-space product of the beam generated by
the source, one has to define the effective cross section
and the effective angular spread so that these quanti-
ties contain information about both the intensity of the
source and its coherence properties.

In this Letter, we study the spatial correlations of a
partially coherent source and the angular correlations
of the beam generated by the source, and we introduce
a correlation-based measure @ of the phase-space char-
acteristics of beams of any state of coherence.

Let us consider the field generated by a planar,
secondary, statistically stationary source of any state
of coherence, situated in the plane z = 0 and radiating
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into the half-space z > 0. Let W (py, ps, w) denote
the cross-spectral density of the light at frequency w
(Ref. 15, Sect. 4.3.2) at a pair of points with position
vectors p; and p, in the source plane (see Fig. 1).
W© represents the spatial correlations at frequency
w, which exist at pairs of points across the source.
We define the normalized width 8w of W© by the
expression

52— L8201/ dps(p1 = po) (WO (p1, s, ) D
v [d2p1 [A2pa|WO(py, ps, w)|2
where the integrations extend over the source.

Next, we introduce the angular correlation function
A(s1, 82, w), which is a measure of the degree of cor-
relation of the field in the far zone, at points P; and
P, in the directions specified by unit vectors s; and
so, respectively (see Fig. 1). We define the normalized

Py

source plane
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Fig. 1. Tllustration of the notation. The point O is an
origin within the region in the plane z = 0, occupied by
a partially coherent, statistically stationary, planar, sec-
ondary source. P; and P, are two points in the far zone
of the source, situated in the plane z = 0. OP; = risy,
OPZ = IgSo, (S% = S% = 1)
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width 84 of the angular correlation function by the for-
mula

52 — Jd%s1, [d%szi(s11 — 821)*| A(s1, 82, @) |
2 Jd?s11 [d%s2.| A(s1, 82, @)

(2)

In this expression, s, and sy, are the projections, con-
sidered as two-dimensional vectors, of the unit vectors
s1 and sg onto the source plane z = 0. The integra-
tions on the right-hand side of Eq. (2) are formally
taken over the entire s;, and so, planes, although in
practice only those s directions in which the far field is
appreciable will contribute. Further, the angular cor-
relation function A of a radiated field can be shown
to be related to the cross-spectral density W in the
source plane by the expression (Ref. 15, Sect. 5.6.3)

ﬂ(Sb Sg, (l)) = k4W(0)(_ks1l;ks2L>w)7 (3)

where & = w/c = 27/, A being the wavelength of light
at frequency w, and WO (f,fs, w) is the four-dimen-
sional Fourier transform of W (py, p2, w), i.e.,

- d2 d2 /
WOE £, w) = [f ﬁw(o)(p’pl,m

X exp[—i(fp + £'p")]. 4)

We now define a new phase-space product for beams
of any state of coherence by the expression

Q- (%)awaﬂ. (5)

We will show that this correlation-based phase-space
product can be regarded as a generalization to beams
of arbitrary state of coherence of the well-known M?
factor. We will demonstrate that in the limiting case
of a fully coherent beam, the @ factor indeed reduces
to the M2 factor of Siegman. To show this, let us re-
call that if the source and, consequently, the radiated
field are spatially fully coherent at frequency w, the
cross-spectral density factorizes; i.e., it is of the form
(Ref. 15, Sect. 4.5.2)

W(C°h>(p1,p2, w) — V*(pl,w)V(p% (l)) s (6)

and the “diagonal element” of W is then just the optical
intensity I(p, w) = |V(p, w)|?. Therefore, in the fully
coherent case [writing now (8% )con for 6% and omitting
the o dependence for brevityl, Eq. (1) becomes

Jd%p1 [d®pa(p1 — p2)*I(p)I(p2)
[d%p1 [d?p2I(py)I(ps)

(7

(‘%%V)coh =

The first- and the second-order moments of the optical
intensity are defined by the formulas

[d®ppallp)

Jd%pI(p) ®

(pa) =

J&Ppp*I(p)

Jd2pI(p) ©

(p?) =

The subscript a in Eq. (8), which takes on values 1 and
2, labels the Cartesian components of the two-dimen-
sional vector p in the source plane. It follows from
Eq. (7) that

(8%)eon = (P2 + (p?) — 2(p)?), (10)
so that
(‘%%V)coh = 20'12 ) (11)

where o7 is the variance of the intensity. Thus in
the coherent limit, 8% is just twice the variance of the
source intensity.

Further, we introduce the radiant intensity J(s, o)
of the field produced by the source, which is known to
be related to the angular correlation function by the
expression (Ref. 15, Sect. 5.2.1)

2
J(s,w) = (%) Als, s, w)cos?0 (12)

where 0 is the angle that the unit vector s makes with
the z axis. For a beam, the factor cos? ¢ can be ap-
proximated by unity. Also, for a fully coherent beam,
the angular correlation function A(si,ss, ®), just as
the cross-spectral density, factorizes in terms of the
amplitudes a(s, w) in the angular spectrum represen-
tation of the field, viz,

AN (51,85, 0) = a*(s1, w)alss, ). (13)
It follows from Egs. (12), (13), and (2) that in the fully

coherent case the width of the angular correlation func-
tion is given by the formula

Jd%s1, [d%sg)(s1, — sg.)%J(s1)J (s2) )
fdQSM fdQSQLJ(Sl)J(SQ)

(‘igl)coh =

(14)

By an argument similar to the one employed in the
derivation of Eq. (11), one readily finds that

(8%)eon = 2((s) = (s.1)%) = 207, (15)
where o is the variance of the radiant intensity.
Hence, in the coherent limit, §4 is proportional to the
angular spread of the beam. On combining Eqs. (11)
and Eq. (15), we see that in the coherent limit, Eq. (5)
reduces to

Qcoh = (2777->0'10'J ’ (16)

which is just the M? factor of Siegman.’
Next, we determine the lower bound for the value of
Q. For this purpose, we consider the inequality
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[d%p1 [d2pa(g™ - ) IWO(py, po)I?

=0, 17
[d2p1 [d2pa|WO(pq, p2)l? an
where
2
g= Z(Pj + aV)WO(py, p2). (18)
i=1

Here the subscript j, which takes on values 1 and 2, la-
bels a pair of points entering the definition (1), and «
is an arbitrary real number. Now according to Eq. (3),
the angular correlation function and the cross-spectral
density in the source plane form a Fourier transform
pair. Hence, on utilizing the properties of pairs of
Fourier transforms along the lines of Ref. 12, we may
convert inequality (17) into the inequality

8% + 4o + a®k28% = 0. (19)
Equation (5) and inequality (19) imply that
Q=1. (20)

This inequality provides a lower bound for @. It then
follows from inequalities (17) and (19) that in order
for a source to generate a beam with the smallest
phase-space product @, one must have g = 0. This
condition, together with the definition (18) of g,
results in the following differential equation for the

unknown cross-spectral density of the source W,([?i)n:
(p1 = p2)Wanin + @0(V1 = Vo)W, = 0. (21)
The solution to Eq. (21) is

W (p1, ps) = A exp[—y(p? + pd)lexp(—Bp1p2), (22)

where A, 8, and y are positive real constants. On sub-
stituting from Eq. (22) into Eq. (21), one obtains an
algebraic relation among the constants «g, 8, and y.
Expression (22) indicates that the general solution of
Eq. (21) is a Gaussian function with two independent
parameters. We can recast expression (22) into a more
familiar form,

Wi (p1,pa) = A exp[—(p? + p2)/4ol]

X exp[—(p1 — p2)*/205],  (23)

which is the cross-spectral density of a Gaussian
Schell-model source (Ref. 15, Sect. 5.3.2), with og be-
ing the width of the intensity distribution and o, be-
ing the spatial coherence length. Thus we have shown
that not only the fully coherent Gaussian beam but also
any partially coherent Gaussian Schell-model beam
minimizes the generalized phase-space product Q.

Finally, let us compare the present approach with
some others discussed in the literature. We have
defined the effective size and the effective angular
width in terms of the appropriate correlations, thus
taking into account coherence properties of the source
at a local level, via the spectral degree of coherence.
Bastiaans,® 8 on the other hand, took account of the
coherence properties of the source by using quite a
different approach. He utilized the same definitions
of the source size and the beam spread as those
used in the coherent case but introduced an overall
degree of coherence of the source, which amounts to
incorporating its coherence properties at a global level.
He then derived a series of inequalities involving the
phase-space product as well as the overall degree of
coherence. However, there appears to be no physical
principle indicating which is the most appropriate
measure of the overall degree of coherence. In fact,
different choices of such measure have led Bastiaans
to different results for the beams with minimum
phase-space products.”®

In summary, we have considered the spatial and the
angular correlations in partially coherent beams as
possible choices for describing the phase-space proper-
ties of such beams. We have then introduced a cor-
relation-based phase-space product €, and we have
shown that it reduces to the usual M? quality factor in
the coherent limit. We have also demonstrated that
the phase-space product @ attains minimum for any
Gaussian Shell-model beam.
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