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We introduce a new class of Schell-model temporal sources
that admit a closed-form analytical decomposition in terms
of coherent pseudo-modes. We explore the source mode
and the corresponding eigenvalue structure and demon-
strate that the lowest-order mode profile reflects the distri-
bution of the source intensity as a function of time. We also
examine the global degree of coherence of the class and
show that it is virtually independent of the pulse intensity
profile particulars at the source. © 2015 Optical Society of
America
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The coherent mode decomposition (CMD) of the optical co-
herence theory has served as a versatile tool for analysis and
synthesis of partially spatially or temporarily coherent light
sources [1]. The second-order coherence properties of a pulse
ensemble {V'(#)} generated by such a source are characterized
by the mutual coherence function of the ensemble, defined as
['(z), 1) = (V*(2,)V(y)), where the angle brackets denote
ensemble averaging. Within the CMD framework, the mutual
coherence function can be represented as [1]

D, 1) = Y _Awi(e)w,(5). (1)
Provided the modes are orthonormal,
/ Ay Oy e) = 5, @)

the mode set {y,(#)} and the corresponding eigenvalues {4,,}
can be determined by solving the homogeneous Fredholm in-
tegral equation:

[00 de,C(2y, 1)y, (81) = A, (5). (3)

Unfortunately, solving Eq. (3) presents, in general, a formi-
dable mathematical task [2]. As a result, there has been only a
limited number of sources for which coherent modes were de-
termined. Apart from the classic case of Gaussian Schell-model
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sources [3,4], twisted Gaussian Schell-model sources [5,6],
Bessel-correlated [7], modified-Bessel-correlated sources gener-
ating partially coherent vortex fields [8], and dark/anti-dark
sources [9], which are propagation-invariant [10], comprise all
known sources admitting a closed-form coherent mode decom-
position. Some of these or related partially coherent sources
were experimentally realized [11,12]

The introduction of an alternative to CMD representations
for partially coherent sources [13,14] has precipitated the discov-
ery of a multitude of new sources, including the so-called
non-uniformly correlated sources [15], multi-Gaussian [16],
cosine-Gaussian [17,18] and sinc [19] Schell-model sources, op-
tical coherence gratings [20], and lattices [20,21], as well as other
sources [22,23]. Instructively, it was recognized by the authors
of [24] and [14] that the representations [13] and [14], respec-
tively, can be equivalent to the CMD with nonorthogonal
pseudo-modes. To the best of our knowledge, however, with
the exception of optical coherence gratings and lattices, no real-
istic partially coherent sources amenable to the CMD in terms of
pseudo-modes have been discussed to date.

In this Letter, we introduce a new class of Schell-model tem-
poral sources which admit a closed-form analytical expansion in
terms of pseudo-modes. We explicitly derive the pseudo-modes
and the corresponding eigenvalues and show that the lowest-
order mode mimics the temporal profile of the source, while
the eigenvalue distribution determines global coherence prop-
erties of the source.

We start by focusing on the class of Schell-model sources
with the mutual coherence function in the form

a7, -7,
(7, 7,) = VII(TI)IZ(TZ){%}: (4)

where /(7)) =I'(7, T') is an arbitrary intensity profile of the
source and /; (x) is a Bessel function of the first kind and first
order. In Eq. (4), we introduced dimensionless variables as
T = t/7; and a, = pr;, where 7; is a temporal width of the
pulse and f is a characteristic inverse coherence time. In the
dimensionless variables, the new sources are completely speci-
fied by the dimensionless coherence parameter ,. The sought
CMD of the source can be written as

C(T,T2) = dubi(T),(T). (5)
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We relax the mode orthogonality condition, given by Eq. (2) in
the expansion (5), but require mode normalization, i.e.,

[ * ATIp(DP = 1. (©)

Equations (5) and (6) imply that each eigenvalue specifies the
amount of energy carried by the corresponding mode.

We stress that the lack of mode orthogonality precludes a
systematic mode determination because the integral equation,
Eq. (3), can no longer be derived. Thus, the modes can, in
general, be determined only by inspection. To this end, we
consider the following Bessel function identity [25]:

W = dr ), )
m=1
where
n®) =10/, @)

It follows by inspection from Egs. (5)—(8) that each normalized
pseudo-mode can be expressed as

VIDT) o)

S dricrgn]

¢u(T) =
|

and the corresponding eigenvalue reads

A, = dn? / S ATI(TY(T). (10)

Since the right-hand side of Eq. (10) is manifestly non-
negative, 4,, > 0 for any 7, thereby ensuring non-negative def-
initeness of the mutual coherence function (4). We notice in
passing that the presented pseudo-mode CMD works for any
pulse intensity profile of the source which makes the novel
sources similar to previously discovered Bessel-correlated spatial
sources. However, the CMD of the latter involves orthogonal
modes because of the angular mode function orthogonality [7].

As the modes and eigenvalues explicitly depend on the
source intensity profile, we must specify the latter to proceed
further. Let us consider the following pulse intensity at the
source:

I(T) x exp|-T], (11)

Here ¢ > 1 is a positive integer. The case ¢ = 1 corresponds to
a Gaussian source, describing generic laser pulses, whereas the
case ¢ > 1 leads to a super Gaussian source which models well
the pulses generated by many mode-locked lasers [26]. Using
Egs. (8)—(11), we can numerically evaluate the modes.

In Figs. 1-3, we display the first five mode patterns. It is seen
in the figures that the lowest-order mode (mode 1) profile flat-
tens as ¢ increases. Another interesting phenomenon, observed
when comparing the mode patterns of Gaussian and various
super Gaussian source pulses in Figs. 1-3, is manifested by the
leading and trailing edge sharpening of the lowest-order pseudo-
mode as the source pulse profile switches from the Gaussian to a
progressively more and more super Gaussian one. It implies that
the lowest-order mode actually determines, at least qualitatively,
the overall source pulse shape for both Gaussian and super
Gaussian pulse sources. Higher-order modes are seen to be time-
delayed and their pattern complexity grows as the mode index
increases. The larger the mode index, the more it time-
delayed. On the other hand, the peak amplitude of a super

Letter

0.8
0.4
0.0
‘&E
—s— Mode 1
—e— Mode 2
-04} ——Mode 3] 1
—v— Mode 4
—— Mode 5
-0.8 : : .
-6 -3 0 3 6

Fig. 1. First five modes of a Gaussian source as functions of time 7'
for a, = 1.

Fig. 2. First five modes of a super Gaussian source with ¢ = 2 as
functions of 7 for a, = 1.

Gaussian source mode increases with the mode index as well.
Additionally, higher-order mode profiles of super Gaussian
pulses are observed to merge together in the regions away from
their peaks or nodes. In addition, all pseudo-modes exhibit a
particular kind of symmetry, either a point or an axial one.
The novel source coherence properties are statistically
stationary, implying that it is of the Schell-model type. Such
sources can be readily generated from statistically stationary
sources with the same degree of coherence by using, for in-
stance, electro-optical or acousto-optical time modulators
[27]. We can rearrange the pseudo-mode eigenvalues in the
decreasing order, A; > 4, > 43..., as is seen from numerical
simulations. Indeed, we display in Figs. 4 and 5 the eigenvalues
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Fig. 3. First five modes of a super Gaussian source with g = 3 as
functions of 7 for a, = 1.
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Fig. 4. Gaussian source eigenvalues 4,, versus a,.

corresponding to the first five modes as functions of the coher-
ence parameter .. [t can be inferred from the figures that the
lowest-order mode eigenvalue has the largest magnitude. As a,
increases, the source coherence is reduced, resulting in a
monotonous decrease of the lowest-order eigenvalue. The ei-
genvalues associated with higher-order modes attain maxima
at certain values of a,, followed by a monotonous decrease with
a,. In the limit of a completely incoherent source, all eigenval-
ues tend to the same limit, implying energy equipartition
among the modes (thermal-like distribution).

The global degree of coherence, defined as the fraction of the
pulse energy carried by the most energetic, lowest-order mode,
can be expressed as [28]

M
V= 12
i 12
In Fig. 6, we exhibit the source global degree of coherence
which monotonously decreases with a,. It follows that the
global degree of coherence diminishes as the source becomes
less coherent, as expected. We also notice that the global degree
of coherence is only weakly affected by the magnitude of 4.
Thus, the overall source coherence properties are affected mar-
ginally by a specific shape of its intensity profile.

For completeness, we can also calculate the local degree of
coherence of the source at two time instances 7; and 75, de-
fined as y(7'y, 7) = T(7'y, T) //I(T)I(T) [L,29]. We
present the results in Fig. 7 as a function of the time difference,
T, - T, and the source coherence parameter a,.

In conclusion, we derived a closed-form analytical decompo-
sition of novel Schell-model partially coherent temporal light
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Fig. 5. Super Gaussian source eigenvalues 4,, versus a,; the source
intensity parameter ¢ = 3.

Vol. 40, No. 13 / July 1 2015 / Optics Letters 3083

1.00 T T T

o

o

o
T

o

@

o
T
L

0.25 i

Global Degree of Coherence

1 1

5 10 15 20

0.00
0

c

Fig. 6. Global degree of coherence of the source as a function of a,.
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Fig. 7. Local degree of coherence of the source as a function of the
time difference and source coherence parameter a,.

sources in terms of nonorthogonal pseudo-modes. We exam-
ined the pseudo-mode and the associated eigenvalue properties
and showed that the lowest-order pseudo-mode captures the
qualitative behavior of the source pulse intensity profile. We
also determined the global degree of coherence of the source
and elucidated its dependence on the source coherence param-
eter and its intensity profile. The fact that the global degree of
coherence turns out to be virtually independent of the source
intensity distribution, the feature the new sources share with
the well-known Gaussian Schell-model sources [1], hints to
the universality of the feature for any Schell-model type source.
The conjectured universality trait should not be confused with
universal features of the local degree of coherence, previously
discovered in the context of a certain class of statistically homo-
geneous light sources [30]. We stress, that although our results
were formulated for temporal sources, they also hold for one-
dimensional spatial sources; the extension to two-dimensional
sources with Cartesian symmetry is straightforward because of
the cross-spectral density separability in the Cartesian coordi-
nates. Finally, we believe that the obtained results advance our,
rather incomplete at present, understanding of the pseudo-
mode decompositions of partially coherent light sources, com-
posed of nonorthogonal modes.

Natural Sciences and Engineering Research Council of Canada
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