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Abstract: We numerically investigate partially coherent short pulse
propagation in nonlinear media near optical resonance. We examine how
the pulse state of coherence at the source affects the evolution of the en-
semble averaged intensity, mutual coherence function, and temporal degree
of coherence of the pulse ensemble. We report evidence of self-induced
transparency random phase soliton formation for the relatively coherent
incident pulses with sufficiently large average areas. We also show that
random pulses lose their coherence on propagation in resonant media and
we explain this phenomenon in qualitative terms.
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1. Introduction

The invention of lasers and their wide range of applications to optical communication systems
has led to a growing interest in the field of nonlinear optics, which explores modifications of
optical properties of the host media upon interaction with high intensity temporal and spatio-
temporal pulses [1–3]. A proper description of realistic laser pulses - with inevitable fluctua-
tions in their amplitude, phase, and width - cannot be achieved without the aid of statistical
optics. Moreover, the limitations that noise in ultrashort laser pulses imposes on the perfor-
mance of optical communication systems have triggered an ever growing interest in coherence
properties of ultrashort pulses [4].

Following the pioneering work of Bertolotti’s group [5,6], comprehensive research has been
carried out on various aspects of partially coherent sources [7, 8] and the pulses generated by
such sources [9, 10]. Further, several theoretical approaches to the description of partially co-
herent pulses have been proposed to date [11, 12]. The evolution of coherence and polarization
state of partially coherent pulses in generic linear [13–19] and nonlinear [20–23] dispersive me-
dia far from any internal resonances has been thoroughly examined using various mathematical
techniques.

At the same time, coherence properties of generic partially coherent pulses traveling in res-
onant linear absorbers and amplifiers have been analyzed [24, 25] and their coherence function
modifications upon propagation investigated. Furthermore, the crucial impact of the initial co-
herence level of random pulses on their self-similar propagation in resonant linear absorbers has
been established [26]. To our knowledge, however, no study of partially coherent pulse propa-
gation in resonant nonlinear media has yet been attempted. The subject naturally arises in the
context of short intense pulse interaction with atomic vapours [27], impurity doped solids [28],
or semiconductor quantum dot media [29] near resonance whenever pulse fluctuations cannot
be neglected.

In this work, we fill in the gap by numerically studying short random pulse propagation in
resonant nonlinear media in the two-level approximation. We examine the behaviour of the
ensemble averaged intensity, mutual coherence function, and temporal degree of coherence
for pulses with relatively large and relatively small average areas. We explore the influence of
the coherence state at the source on ensuing pulse evolution scenarios. We reveal evidence of
self-induced transparency random phase soliton formation for rather coherent large-area input
pulses. We stress that although soliton formation in resonant nonlinear media has been exten-
sively studied either in the two-level [27] or multi-level [30–32] approximation, the work in
this direction has so far focused on fully temporarily coherent solitons. We also show that all
pulses lose their coherence on propagation in such media, regardless of their initial state of co-
herence. Yet, the coherence loss rate on propagation is strongly affected by the pulse coherence
level at the source: the lower the source coherence, the greater the coherence loss rate. Our re-
sults are applicable to a multitude of resonant media, including dilute atomic vapours filling the
hollow-core photonic crystal fibres, impurity-doped solids, and semiconductor quantum dots in
the strong quantum confinement regime.

2. Pulse propagation in resonant nonlinear media

In this work, we model resonant optical media as a collection of two-level atoms. In particular,
we describe the light-matter interactions within the framework of the Maxwell-Bloch equa-
tions [27]. The fluctuating pulse evolution in the medium can then be described in the slowly-
varying envelope approximation by the reduced wave equation in the transformed coordinates,
ζ = z and τ = t − z/c, as

∂ζ Ω =
i
2

ωN|deg|2
cε0h̄

σΔ. (1)
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In Eq. (1), Ω = 2degE /h̄ is the Rabi frequency corresponding to the field envelope E . Here-
after, we will find it convenient to express the electric field envelope in frequency units employ-
ing the Rabi frequency Ω instead of the field envelope E .Also, N is the atom density, and deg

is the dipole matrix element between the nondegenerate ground and excited states of an atom.
Also, σΔ denotes the dipole envelope function of an atomic dipole moment averaged over a dis-
tribution of detunings Δ of the carrier wave frequency ω from the atomic resonance frequency
ω0,

σΔ =
∫

dΔg(Δ)σ(Δ). (2)

Here, g(Δ) is assumed as the inhomogeneous broadening function with Gaussian distribution

g(Δ) =
1√
2πδ

exp

(
− Δ2

2δ 2

)
, (3)

in which δ represents the inhomogeneous broadening width.
Next, the Bloch equations governing the complex dipole envelope function σ and one-atom

inversion w dynamics can be expressed in the form [27]

∂τ σ =−( 1
T⊥ + iΔ)σ − iΩw, (4)

and
∂τw =− 1

T||
(w+1)− i

2 (Ω
∗σ −Ωσ∗). (5)

Here, T⊥ and T|| are the dipole phase and atomic population relaxation times, respectively.
To explore the feasibility of self-induced transparency phenomena, we need to consider co-

herent transient regime in that the input pulse width is so short (tp < min(T⊥,T||)) that atoms
of the material undergo no damping during their interaction with the pulse. Therefore, the evo-
lution of atomic variables can be studies as if no damping effect is present. In such a case the
Bloch equations reduce to

∂T σ =−iΔσ − iΩw, (6)

∂T w =− i
2 (Ω

∗σ −Ωσ∗). (7)

Here, Z = αζ and T = t/tp, tp denoting a characteristic rms width of the incident pulse, are
dimensionless variables and, α = N|deg|2ω2/

√
2πδ h̄ε0c2 represents the linear absorption co-

efficient.
To quantitatively describe the pulse evolution in the medium, we must, in general, numeri-

cally solve the Maxwell-Bloch equations, Eqs. (1)-(3), together with Eqs.(6)-(7) subject to the
appropriate initial and boundary conditions. We assume that the atoms are all initially in their
ground states such that σ = 0 and w = −1, and the source field envelope Ω(t,0) (in the fre-
quency units) is known. However, as incident pulses have fluctuating amplitudes and phases,
we can only describe the pulse evolution in terms of appropriate correlation functions.

3. Statistical properties of fluctuating pulses and statistical ensemble generation

Henceforth, we will be primarily interested in the second-order temporal coherence properties
of fluctuating pulses, propagating in resonant nonlinear media. The latter are specified by the
second-order cross-correlation function, defined as

Γ(τ1,τ2,ζ ) = 〈Ω∗(τ1,ζ )Ω(τ2,ζ )〉, (8)

where the angle brackets denote ensemble averaging over all possible field realizations. The
ensemble power distribution is then defined in terms of the average intensity as

I(τ,ζ )≡ Γ(τ,τ,ζ ), (9)
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and the ensemble coherence properties are characterized by the temporal degree of coher-
ence [33, 34]

γ(τ1,τ2,ζ )≡ Γ(τ1,τ2,ζ )√
I(τ1,ζ )I(τ2,ζ )

. (10)

In the fully coherent limit, the degree of coherence attains its maximum, |γ(τ1,τ2,ζ )|= 1 [33,
35, 36].

The description of fluctuating field propagation in nonlinear media directly in terms of
the correlation functions runs into a formidable obstacle known as a closure problem which
emerges regardless of the nonlinearity nature, see, for instance [37]. It can be shown that when-
ever one attempts to derive an equation of motion for the second-order correlation functions
using the Maxwell-Bloch equations, the resulting equation will also involve third-order corre-
lations. The corresponding evolution equations for the third-order correlation functions will de-
pend on fourth-order correlations and so forth, resulting in an infinite hierarchy of the evolution
equations for correlation functions of all orders. One is then forced to either neglect correlation
functions higher than a certain order or make ad hoc assumptions regarding the pulse statis-
tics that make it possible to express higher-order correlations in terms of the lower-order ones.
This dilemma is known as a closure problem. In general, neither resolution of the dilemma has
been shown to yield satisfactory results for realistic nonlinear media [37] unless the medium
response time is much longer than a characteristic coherence time of the incident field. In the
latter case, the medium averages over higher-order field fluctuations and a mean-field [38–40]
or averaged-response description [41] is possible leading to a closed form evolution equation
for the second-order correlation function. In the present case, the resonant medium response is
noninstantaneous, but the response time can be either longer or shorter than the pulse coher-
ence time. Thus, the closure problem cannot be easily resolved and we must resort to a different
mathematical description.

To this end, we employ a wave optical Monte Carlo method which was developed in [42–44]
and recently applied to random pulse propagation in nonresonant media with Kerr nonlineari-
ties [23]. In essence, the technique entails generating an ensemble {Ω(t)} of random fluctuating
pulses at the source with specified coherence properties and transmitting individual ensemble
realizations through the resonant medium. At the end, the ensemble average is performed and
the appropriate second-order correlation functions are determined. Thus, we first have to solve
the Maxwell-Bloch equations Eqs.(1)-(3) and Eqs.(6)-(7) numerically for each random realiza-
tion of the pulse and then average over L members of the ensemble according to

ΓL(τ1,τ2,ζ ) =
1
L

L

∑
i=1

Ω∗(τ1,ζ )Ω(τ2,ζ ), (11)

to obtain the second-order cross-correlation function of the pulse ensemble. The averaged de-
gree of coherence of the ensemble is then determined by

γL(τ1,τ2,ζ ) =
ΓL(τ1,τ2,ζ ))√
IL(τ1,ζ )IL(τ2,ζ )

. (12)

To construct the pulse ensemble, we begin by representing a fluctuating field in any transverse
plane ζ ≥ 0 through the Karhunen-Loève expansion as

Ω(τ,ζ ) = ∑
n

anψn(τ,ζ ), (13)

where {an} are uncorrelated random amplitudes, and {ψn(τ,ζ )} are orthogonal coherent
modes. We specify a non-Gaussian pulse ensemble statistics through

an =
√

λn exp(iϕn), (14)
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where {ϕn} are statistically independent random phases, uniformly distributed in the interval
[−π,π] [23]. The statistical independence of the set {ϕn} implies that

〈exp[i(ϕn −ϕm)]〉= δmn, (15)

Notice that the statistics (14), together with (15), imply that

〈a∗nam〉= λnδmn. (16)

Assuming the modes are normalized at the source, each λn determines the power carried by the
nth mode of the source.

It then follows at once from Eqs. (13) and (16) as well as the definition of Γ, Eq. (8), that [45]

Γ(τ1,τ2,ζ ) = ∑
n

λnψ∗
n (τ1,ζ )ψn(τ2,ζ ). (17)

Here λn and ψn(τ,ζ ) are the eigenvalues and eigenmodes of the Fredholm integral equation,
∫ ∞

−∞
dτ1 Γ(τ1,τ2,ζ )ψn(τ1,ζ ) = λnψn(τ2,ζ ). (18)

It remains to specify the second-order correlations of the source which determine the coher-
ent modes and their weights. To this end, we employ a generic Gaussian Schell-model (GSM)
source with the cross-correlation function

Γ(t1, t2) =
E√
πtp

exp

[
− (t2

1 + t2
2 )

2tp

]
exp

[
− (t1 − t2)2

2t2
c

]
, (19)

where tp and tc are characteristic pulse width and coherence time at the source and E is a total
energy of the source. The coherent modes of GSM sources are analytically known [46,47] as

ψn(t) =
1√
2nn!

(
2π
d

)1/4

Hn

(
t√
2d

)
exp

(
− t2

4d

)
, (20)

where Hn(t) is a Hermite polynomial of order n. The modal weights are given by

λn =

(
π

a+b+d

)1/2( b
a+b+d

)n

. (21)

The parameters a,b and d are defined as

a =
t2
p t2

c

2(t2
c +2t2

p )
, b =

t4
p

2(t2
c +2t2

p )
, (22)

and
d =

√
a2 +2ab. (23)

where tp and tc correspond to the characteristic width and coherence time of the pulse respec-
tively [7, 9]. The coherence time, tc specifies a time duration over which two pulses can be
added coherently. The limits tc = 0 and tc = ∞ correspond to uncorrelated and fully correlated
pulses, respectively.

In proceeding with modeling random sample pulses, we ascertain here a proper definition for
the variable an in Eq. (14).
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As we are interested in simulating noisy laser pulses, we generate an ensemble with non-
Gaussian statistics. To do so, the random phases ϕn in Eq. (14), are chosen to be uniformly
distributed in the interval [−π,π]. Here, ϕn and ϕm are statistically independent when n 	=
m, so the condition in Eq. (13) is satisfied [45, 47]. By interpreting the modes in Eq. (17)
as natural modes of oscillations of the source, our prescribed choice of an generates random
sample pulses, which are linear combinations of fundamental fields with random phases. It is
worth mentioning that the constructed field realizations have random fluctuations both in phase
and amplitude, but that each random field realization contains the same amount of energy [23].

Propagation of GSM pulses in resonant nonlinear media can be simulated by applying the
source pulse Eq. (13) into wave equations Eqs.(1)-(3) and Eqs.(6)-(7). As mentioned previ-
ously, each random realization will be propagated in the media individually. The process will
be repeated many times for all different realizations of the field, and the resulting intensities
will be averaged to produce a partially coherent pulse intensity according to Eq. (11).

4. Physical model of the source and host medium

We consider a GSM as a generic model of a random input pulse and proceed to generate an
ensemble of source pulses according to the just outlined prescription. In Fig. 1, we exhibit
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Fig. 1. Magnitude of 10 random field realizations of the GSM pulse at the source Z = 0 as
a function of dimensionless time T = t/tp in three cases (a) tc = 10tp, (b) tc = 2tp and (c)
tc = tp. Black thick line: ensemble average amplitude.
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Fig. 2. Profile of the mutual coherence function at the source, Z = 0 as a function of dimen-
sionless time T1 and T2 in three cases : (a) tc = 10tp, (b) tc = 2tp and (c) tc = tp.
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three short GSM pulses with different coherence level at the source: a relatively coherent input
pulse with tc = 10tp, a moderately coherent pulse with tc = 2tp and a relatively incoherent pulse
with tc = tp. The magnitude of simulated sample pulses are presented in Fig. 1 for 10 random
realizations. It can be seen in the figure that each field realization has random fluctuations
which become progressively more pronounced as the pulse coherence level decreases. The
averaged pulse amplitude for a large set of realizations is also displayed with thick black line.
We also display the mutual coherence function profile at the source as a function of a pair of
dimensionless time instances T1 = t1/tp and T2 = t2/tp in Fig. 2. It is seen in the figure that the
relatively coherent pulse has a nearly isotropic mutual coherence function profile, while that
of the relatively incoherent pulse is strongly anisotropic with a sharp peak along the diagonal
T1 = T2. This behaviour naturally reflects δ -function like coherence properties of such pulses.

As mentioned in the previous section, the number of modes in the Karhunen-Loève decom-
position of each ensemble member is relevant to the coherence level of the source pulse. Thus,
we employ a large number of modes to faithfully represent relatively incoherent pulses through
Eq. (13) [47]. At the same time, the Monte Carlo simulation accuracy crucially depends on the
number of the sample field realizations, L. The ensemble average represented by Eq. (11), con-
verges to the time average as the sample size L increases. Therefore, a high fluctuation level of
relatively incoherent pulses–manifest in Fig. 1(c)–necessitates a high sample volume [23, 42].

The resonant host medium is modelled as a collection of two-level atoms. The two key re-
laxation rates–transverse and longitudinal–can be determined as follows. The total transverse
relaxation rate is defined as [27]

1
T⊥

=
1

T h
⊥
+

1

T in
⊥
, (24)

where T h
⊥ and T in

⊥ are homogenous and inhomogeneous broadening lifetimes, respectively. Ac-
cording to [48], the effective absorption line shape of the medium is affected by the ratio,

b =
√

4 ln2
δh

δin
, (25)

where δh = 1/T h
⊥ and δin = 1/T in

⊥ correspond to the homogenous and inhomogeneous linewidth,
respectively. Eq.(25) distinguishes two limiting cases. In the first case, δνin >> δνh, the trans-
verse decay rate is mainly due to inhomogeneous broadening. In contrast, if δνh >> δνin, the
homogeneous broadening is dominant and the transverse decay rate is mostly influenced by
collisions.

The energy relaxation time T||, defining the time interval over which the atomic populations
decay, is related to T⊥ according to [1, 48];

1
T⊥

=
1

2T||
+

1

T h
⊥
. (26)

In our simulations, we assume an inhomogeneously broadened medium such that b 
 1. A
dilute sodium vapour at T = 300K with a density N = 1011cm−3 can serve as a physical real-
ization of the medium. Setting b = 0.05 , T|| = 16 ns, a typical value for the room temperature
sodium [1], and δin = 1GHz, and employing Eqs.(24) through (26), we obtain T⊥ � 32 ns.

5. Numerical simulation results

We numerically study the evolution of random input pulse ensembles with the average pulse
areas at the source A0 = 0.8π and A0 = 1.5π where the latter is defined, in dimensionless
variables, as

A (Z)≡
∫ ∞

−∞

√
〈I(T,Z)〉 dT ; (27)

#249844 Received 9 Sep 2015; revised 4 Nov 2015; accepted 5 Nov 2015; published 11 Nov 2015 
© 2015 OSA 16 Nov 2015 | Vol. 23, No. 23 | DOI:10.1364/OE.23.030270 | OPTICS EXPRESS 30277 



2

Z
1

(a)

02

0
T

0

10

30

20

-2

I(
Z

,T
)

10

Z
5

(b)

0
15

10
T

5
0

0

20

40

60

I(
Z

,T
)

Fig. 3. Average intensity evolution of relatively coherent pulses as a function of the prop-
agation distance Z. The cases (a) and (b) correspond to the average input pulse areas
A0 = 0.8π and A0 = 1.5π , respectively.

A0 ≡A (0). It follows at once from Eq. (27) that the average area reduces to the standard pulse
area [27] in the fully coherent limit.

Fig. 4. Evolution of the average pulse area as a function of the propagation distance Z for
relatively coherent pulses with A0 = 0.8π (dashed ) and, A0 = 1.5π (solid), respectively.

We first examine the behaviour of relatively coherent input pulses with tc = 10tp. In Fig. 3,
we illustrate the average intensity profile evolution of two such pulses with the areas A0 = 0.8π
and A0 = 1.5π through the inhomogeneously broadened medium, corresponding to the cases
Fig. 3(a) and 3(b) in the figure. We can see in Fig. 3(a) that a smaller area pulse suffers strong
absorption on its propagation through the medium and no soliton formation is observed. More-
over, Fig. 4 represents the evolution of the average pulse area as a function of the propagation
distance. It is evident from the figure that the corresponding pulse area, displayed with a dashed
line, rapidly reaches zero upon pulse entrance into the medium. On the other hand, we can see
in Fig. 3(b) that a larger area pulse initially broadens, while its peak intensity decreases. The
pulse is, however, ultimately converted into a stable soliton which is evident in the figure: the
pulse maintains its shape, suffering no visible attenuation over sufficiently large propagation
distances. We notice also that all relatively coherent pulses experience a time delay on propa-
gation which is manifested through the pulse intensity peak shift relative to its position at the
source. As is seen in Fig. 4, the average pulse area, plotted with a solid line, attains the asymp-
totic value of 2π , reminiscent of the fully coherent self-induced transparency situation [27].
Thus, our results can be interpreted as the manifestation of self-induced transparency (SIT)
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Fig. 5. Average intensity evolution as a function of propagation distance Z for input pulses
with (a) tc = 2tp and (b) tc = tp. The average pulse area at the source is A0 = 1.5π .

Fig. 6. Evolution of the averaged pulse area as a function of propagation distance Z, corre-
sponding to tc = 2tp (dashed line) and, tc = tp (solid line) with the initial area A0 = 1.5π .
The red dotted-dashed line represents the A = 2π limit.

phenomena and solitary-pulse formation in presence of small noise at the source.
To elucidate the influence of the input pulse coherence level on the SIT soliton formation,

we also study the evolution of random pulses with lower levels of coherence. In Fig. 5, we
illustrate the evolution of partially coherent (tc = 2tp) and rather incoherent (tc = tp) incident
pulses with the initial area A0 = 1.5π . It can be seen in Fig. 5(a) that a partially coherent pulse
intensity profile becomes wider and more shallow upon propagation. The pulse leading edge
self-steepens, distorting its symmetry as well. The similar behaviour is exhibited by rather in-
coherent pulses, as is seen in Fig. 5(b). In this case, though, pulse broadening and peak intensity
decrease are more pronounced. The average pulse area dynamics are shown in Fig. 6. It is seen
in the figure that in both cases, the area appears to monotonously increase with the propagation
distance, exceeding the value of 2π . We can infer that SIT soliton formation is precluded for
the incident pulses with high enough fluctuation levels.

To explain the evolution scenario difference of more from less coherent input pulses, we re-
call that each statistical ensemble consists of a number of pulse realizations. As an example,
in Fig. 7 we display the evolution of five relatively coherent random pulse realizations at three
propagation distances: Z = 0, Z = 5 and Z = 10. As it is evident in the figure, the field real-
izations have almost the same initial area and, consequently nearly the same behaviour upon
propagation. Thus upon averaging, such an ensemble yields a nearly coherent pulse transform-
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Fig. 7. Intensity of five relatively coherent, tc = 10tp, pulse realizations with A0 = 1.5π at
three sample points in Z: Z = 0 (a), Z = 5 (b), and Z = 10 (c), respectively.
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Fig. 8. Intensity of five rather incoherent, tc = tp pulse realizations with A0 = 1.5π at three
sample points in Z: Z = 0 (a), Z = 5 (b), and Z = 10 (c), respectively.

ing to a SIT soliton. On the contrary, in a rather incoherent pulse case, (tc = tp), the ensemble
realizations, shown in Fig. 8, vary greatly in their initial shape and area. As a result, different
realizations suffer widely different time delays upon propagation as is seen in the figure. Notice
also that the realization pulse distribution in Fig. 8 explains the output pulse asymmetry mani-
fest in Fig. 5. The ensemble averaging then results in a long shallow pulse, more susceptible to
incoherent relaxation processes that ultimately preclude the SIT soliton formation in this case.

Let us now focus on the mutual coherence function evolution in the system. In Fig. 9, we
represent the mutual coherence function of the three pulses–a relatively coherent, partially co-
herent and nearly incoherent ones–at the source Z = 0 and at the distance Z = 10 away from
the source. To obtain reliable results at the output, we used L = 2000 sample realizations for the
nearly incoherent case and L = 1000 for the partially coherent case. We can infer from the fig-
ure that the mutual coherence function profiles in all cases become progressively more centred
along the T1 = T2 diagonal, implying pulse coherence reduction upon their propagation in the
medium. Moreover, the least coherent input pulses display the fastest coherence loss rate. Such
a behaviour can be explained by recalling that relatively incoherent pulses broaden faster than
do relatively coherent ones. Hence, the former become long enough to be affected by incoher-
ent relaxation processes at shorter propagation distances than are the latter. Thus, less coherent
pulses lose their coherence faster than do more coherent ones. However, regardless of the ini-
tial coherence level, all random pulses become progressively less coherent on propagation in
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Fig. 9. Magnitude of the mutual coherence function at Z = 0, (top row) and Z = 10, (bottom
row); tc = 10tp,(a,d); tc = 2tp, (b,e); tc = tp, (c,f).
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Fig. 10. Magnitude of the complex degree of coherence function at Z = 0, (top row) and
Z = 10, (bottom row); tc = 10tp,(a,d); tc = 2tp, (b,e); tc = tp, (c,f).

resonant media due to the their temporal broadening which makes them subject to incoherent
relaxation processes. The similar trend is reflected in the temporal degree of coherence evolu-
tion, exhibited in Fig. 10.

6. Conclusion

In summary, we applied numerical Monte Carlo techniques to simulate partially coherent GSM
pulse propagation in a resonant, inhomogeneously broadened nonlinear medium. We modeled
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the medium as a collection of two-level atoms. We numerically studied the dynamics of the
ensemble averaged pulse intensity, the mutual coherence function, and the temporal degree of
coherence as pulses of an arbitrary coherence state at the source propagate into the medium. We
have elucidated conditions for self-induced transparency soliton formation in the system. Our
simulation results reveal that self-induced transparency is possible provided the input pulses
are sufficiently coherent and possess large enough average areas. We have also demonstrated
that regardless of their initial state of coherence, random pulses lose their coherence on propa-
gation. However, low-coherence input pulses lose their coherence at a faster rate than do their
more coherent counterparts because the former broaden faster than the latter, and hence be-
come susceptible to incoherent relaxation processes at shorter propagation distances than are
the latter.
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