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Abstract – We formulate a framework to tailor the electromagnetic coherence of polychromatic
surface plasmon polaritons (SPPs) at a metal-air interface by controlling the correlations of the
excitation light. The formalism covers stationary and nonstationary SPP fields of arbitrary spec-
tra. We show that narrowband SPPs are virtually propagation invariant and strictly polarized,
whereas the coherence properties of broadband SPPs can be widely tuned to specific applica-
tions. The connection between the coherence state of the light source and the ensuing SPP field
establishes a novel paradigm in statistical plasmonics with far-reaching implications for plasmon
coherence engineering.

Copyright c© EPLA, 2016

Introduction. – Surface waves are ubiquitous in
physics; they arise in fields as diverse as fluid mechanics,
acoustics, geophysics, and electromagnetics. Surface elec-
tromagnetic waves especially have attracted interest in sci-
ence and engineering [1]. Among them are the celebrated
surface polaritons, supported as plasmons, phonons, and
excitons. Surface plasmon polaritons (SPPs) [2] have
been the workhorse in nanophotonics [3], resulting in the
emergence of plasmonics as a separate field covering cross-
disciplinary physics, including holography [4], novel mate-
rials [5,6], nonlinear interactions [7,8], and subwavelength
light control [9]. To date, plasmonics has chiefly dealt with
spatially and spectrally fully coherent SPPs. Coherence,
however, is an indispensable degree of freedom governing
spectral distribution, propagation, interference, polariza-
tion, and interactions of classical and quantum wave fields
of diverse nature [10]. Thus, besides their unique role
in shaping the salient features of surface electromagnetic
waves, SPP coherence properties are of fundamental in-
terest for wave and surface physics in general.

Surface plasmons are known to greatly alter the spec-
trum, polarization, and spatial coherence of optical near
fields [11–14]. Polar material with grating etched on the
surface produces, in thermal equilibrium, spatially coher-
ent beam lobes of directionally dependent spectrum [15].
SPPs also play a key role in modifying the coherence prop-
erties of fields transmitted through periodic hole arrays

in metal films [16,17]. In particular, it has been demon-
strated both theoretically [18] and experimentally [19]
that SPPs may be employed to control the spatial co-
herence between optical fields in Young’s two-slit inter-
ferometer. And conversely, Young’s setup combined with
leakage radiation microscopy enables the measurement of
SPP coherence evolution on propagation [20]. Further,
bi-modal fields composed of uncorrelated long-range and
short-range SPPs on a metallic nanoslab were studied and
their coherence properties elucidated [21]. However, to our
knowledge, no systematic theory of multimode, spatially
and spectrally partially coherent SPPs has so far been
developed. Exploring the statistical features and excita-
tion mechanisms of polychromatic SPP fields in space-time
domain presents a fundamental interest. By the same to-
ken, coherence-tailored polychromatic SPPs are expected
to serve as versatile tools, e.g., for plasmon continuum
spectroscopy [22], on-chip ultrashort optical pulse manip-
ulation in nanostructured optoelectronic circuits [23], con-
trolled coupling of light-emitting elements [24–26], and
subwavelength white-light imaging [27].

In this work, we advance a theory for partially coherent
polychromatic SPP fields of arbitrary spectra generated
at a metal-air boundary. In particular, we determine
the space-time and space-frequency coherence matrices of
multicomponent SPP fields in terms of the spectral cor-
relations of their monochromatic constituents. As a key
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result, we demonstrate how such polychromatic SPP fields
can be excited with partially coherent beam sources in
the Kretschmann coupling modality. We establish that
the SPP coherence characteristics can be widely tailored
by controlling the spectral and spatial coherence of the
light source. We show that narrowband SPPs are fully po-
larized and virtually propagation invariant over distances
comparable to the propagation lengths determined by the
losses in the metal. Such propagation-invariant SPPs
will facilitate nearly distortion-free information transfer
in plasmonic networks. We also present spectrally broad-
band SPPs of widely variable coherence, retaining a high
degree of polarization. Our work represents a novel
paradigm in statistical plasmonics, referred to as plasmon
coherence engineering, which we expect to be instrumen-
tal, among others, for sensor applications, interferometry,
spectroscopy, surface morphology studies, and nanoparti-
cle excitation.

Formalism. – We begin by recalling the excitation
of a single SPP mode of (angular) frequency ω in the
Kretschmann configuration [2,3], sketched in fig. 1, with a
homogeneous, isotropic, and nonmagnetic metal film de-
posited on a glass prism. The film, located in the xy-
plane and of complex-valued relative permittivity εr(ω),
is taken to be thick enough so that any coupling between
the metal-slab modes [28,29] can be neglected. The region
near the metal-air surface at z = 0 can then be treated
as semi-infinite half-spaces [30] and the x-axis is chosen
to coincide with the SPP propagation direction. As only
TM-polarized SPPs are supported by nonmagnetic me-
dia [2,3], the polychromatic electric field in air, at a space-
time point (r, t), can be written as [30]

E(r, t) =
∫ ω+

ω−

E(ω)p̂(ω)ei[k(ω)·r−ωt]dω, (1)

where ω+,− specify the SPP frequency domain (in the
undamped free-electron model which ignores absorption
ω+ = ωp/

√
2, with ωp being the plasma frequency [2]).

Further, E(ω) is a complex spectral amplitude of the
monochromatic SPP at the origin (r = 0) and

k(ω) = kx(ω)êx + kz(ω)êz, (2)

p̂(ω) = k̂(ω) × êy (3)

are the wave vector and the normalized polarization vec-
tor, respectively, with k̂(ω) = k(ω)/|k(ω)|, and êx, êy,
and êz are Cartesian unit vectors. We note that p̂(ω) is
not orthogonal to k(ω) [29], implying that the SPP mode
is elliptically polarized (in the xz-plane). It follows from
the electromagnetic boundary conditions that [2,3,30]

kx(ω) =
ω

c

√
εr(ω)

εr(ω) + 1
, kz(ω) =

ω

c

√
1

εr(ω) + 1
, (4)

where c is the speed of light. The propagation length
of a monochromatic SPP component is given by

Air

Ligh
t s

ou
rce Detector

SPP

Metal

Glass

Fig. 1: (Colour online) SPP excitation in the Kretschmann
configuration.

lSPP(ω) = 1/k′′
x(ω), with the double prime denoting the

imaginary part.
The complete information about the second-order sta-

tistical properties of a nonstationary and generally three-
component electric field, at two space-time points (r1, t1)
and (r2, t2), is encoded in the electric coherence matrix

Γ(r1, t1; r2, t2) = 〈E∗(r1, t1)ET(r2, t2)〉. (5)

Here E(r, t) is a column vector, the asterisk and su-
perscript “T” denote complex conjugation and matrix
transpose, respectively, and the angle brackets stand for
ensemble averaging. Now, let eq. (1) be a realization of
the random electric field. All coherence (and polariza-
tion) properties of the polychromatic SPP field are then
obtained by inserting eq. (1) into eq. (5), yielding

Γ(r1, t1; r2, t2) =
∫ ω+

ω−

∫ ω+

ω−

W(r1, ω1; r2, ω2),

× e−i(ω2t2−ω1t1)dω1dω2, (6)

in which

W(r1, ω1; r2, ω2) = W (ω1, ω2)K(ω1, ω2)
× ei[k(ω2)·r2−k∗(ω1)·r1] (7)

is the spectral electric coherence matrix, with

W (ω1, ω2) = 〈E∗(ω1)E(ω2)〉 (8)

being the spectral correlation function and

K(ω1, ω2) = [|k(ω1)||k(ω2)|]−1

×
[

k∗
z(ω1)kz(ω2) −k∗

z(ω1)kx(ω2)
−k∗

x(ω1)kz(ω2) k∗
x(ω1)kx(ω2)

]
. (9)

Equation (6) is general in the sense that no restrictions
have been imposed on the relative permittivity, the spec-
trum, or the spectral correlation function; it covers any
partially coherent polychromatic SPP field. In particu-
lar, the function W (ω1, ω2) in eq. (8) specifies fully the
space-frequency, and thus also the space-time, coherence
characteristics of the SPP field.
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Plasmon coherence engineering. – The crux of
plasmon coherence engineering is to judiciously tailor
W (ω1, ω2) by light sources of controlled coherence, as we
demonstrate next. To this end, we first examine a TM-
polarized, partially coherent, polychromatic beam inci-
dent on the prism in the geometry of fig. 1. The electric
field of the incoming light can be expressed by the angular
spectrum representation [3,10] as

E(r, t) =
∫ ∞

0

[ ∫ ∞

−∞
E(kX , ω)p̂(kX , ω)

× ei(kXX+kZZ)dkX

]
e−iωtdω, (10)

where k2
X +k2

Z = n2(ω/c)2, with n being the refractive in-
dex of the prism. A coordinate frame XZ, with the Z-axis
making an angle θ0 with respect to the z-axis of the xz-
frame, has been introduced. The second-order statistical
properties of the incident field are then specified by the
spectral electric correlation function

W(k1X , ω1; k2X , ω2) = 〈E∗(k1X , ω1)E(k2X , ω2)〉. (11)

We further choose θ0 such that in the xz-frame the tangen-
tial wave vector component of the beam mode of central
frequency ω0 and kX = 0 within the angular spectrum
exactly corresponds to k′

x(ω0) of the SPP obtained from
eq. (4), with the prime denoting the real part, i.e.,

n
ω0

c
sin θ0 = k′

x(ω0). (12)

This condition represents precise phase matching between
the central illuminating plane wave and the central SPP
mode along the metal-air surface.

To ensure that an SPP mode is generated at every ω
within the spectral excitation bandwidth, one must impose
a similar phase matching condition for the other illumi-
nation plane waves as well. Suppose that for an arbi-
trary frequency ω �= ω0 the angular spectrum mode with
kX = n(ω/c) sin Δθ, where Δθ is the angle between the
wave vector and the Z-axis, couples to the corresponding
SPP. In the xz-frame this means that

n
ω

c
sin θ = kZ sin θ0 + kX cos θ0 = k′

x(ω), (13)

with θ = θ0 + Δθ, and by making use of the paraxiality
of the illumination so that Δθ ≈ kX/kZ � θ0 and kZ ≈
n(ω/c), from eqs. (12) and (13) we obtain the coupling
condition

kX =
k′

x(ω) − k′
x(ω0)

cos θ0
. (14)

At each frequency ω within the bandwidth the angular
spectrum wave satisfying eq. (14) thus excites the respec-
tive monochromatic SPP constituent. Now, since the
spectral amplitudes in eqs. (1) and (10) are connected
as E(ω) ∝ E(kX , ω), with the exact coupling efficiency

specified by the transmission coefficient of the metal slab
(see appendix), we find from eq. (14) that

E(ω) ∝ E
[k′

x(ω) − k′
x(ω0)

cos θ0
, ω

]
. (15)

The relation between the SPP correlation function in
eq. (8) and the angular spectrum correlation function of
the incident light given by eq. (11) thus reads as

W (ω1, ω2) ∝

W
[k′

x(ω1) − k′
x(ω0)

cos θ0
, ω1;

k′
x(ω2) − k′

x(ω0)
cos θ0

, ω2

]
. (16)

Knowing the dispersion of the metal, eq. (16) establishes
exactly how the spatio-spectral statistical properties of the
stationary or pulsed excitation beam are to be tuned to
create a polychromatic SPP field with the desired coher-
ence characteristics.

The scheme for controlled generation of spatially and
spectrally (temporally) partially coherent, polychromatic
SPPs at the metal-air interface is the cornerstone in
plasmon coherence engineering. The achievable SPP
bandwidth can be estimated from the (paraxial) coupling
condition in eq. (14) by knowing k′

x(ω) and θ0 for a given
metal. For example, assuming Δθ < 5◦ and n ≈ 1.5,
and employing empirical data [31] leads for central wave-
length λ0 = 650 nm in the case of Ag to θ0 ≈ 43.4◦ and
595 nm < λ < 706 nm. The illuminating light source
then must possess (at least) the same spectral bandwidth,
with desired correlations among the different frequencies
as specified by eq. (16). As a last step, the frequency
components are to be directed as plane waves at the cor-
rect angles given by eq. (14), which can be accomplished
by spectrally separating the frequencies from a polychro-
matic plane-wave source, or by employing spatially par-
tially coherent light beams [10]. Although the scheme
for plasmon coherence engineering presented here concerns
one-dimensional SPP propagation, with appropriate mod-
ifications the same ideas naturally apply for statistical
plasmonics in two dimensions, as in tailoring the electro-
magnetic coherence of optical evanescent fields at a dielec-
tric interface [32].

Examples. – To gain insight into the coherence char-
acteristics of polychromatic SPPs, we first consider a nar-
rowband field of central frequency ω0. Under the condition
that metal dispersion can be ignored, i.e., εr(ω) ≈ εr(ω0),
we may extend all frequency integrations from minus in-
finity to plus infinity. It then follows from eqs. (2) and (4)
that k(ω) ≈ (ω/c)κ(ω0), with κ(ω0) = (c/ω0)k(ω0), and
further from eqs. (6)–(9) that

Γ(r1, t1; r2, t2) = K(ω0, ω0)
∫ ∞

−∞

∫ ∞

−∞
W (ω1, ω2)

× ei[α2(r2,t2)−α∗
1(r1,t1)]dω1dω2, (17)

where
αj(rj , tj) =

ωj

c
[κ(ω0) · rj − ctj ], (18)
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with j ∈ {1, 2}. Equation (17) implies that all the
coherence matrix elements have identical space-time
dependence, i.e., the correlations among the field com-
ponents propagate and attenuate in exactly the same way.
Moreover, if we let x1 = x2 = x, and recall that for
a sufficiently narrowband spectrum the SPP modes de-
cay roughly at the same rate, we find from eq. (17) that
Γ(r1, t1; r2, t2) ∝ exp[−2x/lSPP(ω0)]. Hence, over dis-
tances smaller than lSPP(ω0) the polychromatic narrow-
band SPP fields are virtually propagation invariant. Such
SPPs can be used for nearly distortion-free information or
image transfer in plasmonic networks.

For broadband spectra, on the other hand, dispersion
in the metal can no longer be neglected and thus each el-
ement of the coherence matrix in eq. (6) has to be treated
separately (and numerically), whereupon the correlations
between the electric-field components will in general have
different space-time evolutions. It is therefore convenient
to analyze the ensuing SPPs in terms of the electromag-
netic degree of coherence [33],

γ(r1, t1; r2, t2) =
||Γ(r1, t1; r2, t2)||F√
trJ(r1, t1)trJ(r2, t2)

, (19)

where ‖·‖F is the Frobenius norm, tr denotes the trace,
and J(rj , tj) = Γ(rj , tj ; rj , tj) is the polarization matrix.
The degree of coherence in eq. (19), which is real and
bounded as 0 ≤ γ(r1, t1; r2, t2) ≤ 1, is a measure of all the
correlations existing in a multicomponent light field. The
upper and lower limits correspond to full coherence and
complete lack of coherence of the electric vector field at
the two space-time points, while the intermediate values
represent partial coherence.

The spectra of broadband SPP fields are determined
by the spectral correlation functions W (ω1, ω2) which,
as shown above, are sculpted into the desired form by
modifying the spectral (and spatial) coherence of the exci-
tation light. As an example, we examine spectrally uncor-
related (stationary) SPPs, in which case Γ(r1, t1; r2, t2) =
Γ(r1, r2, τ) with τ = t2−t1. Stationary illumination is ex-
pected to give a lower boundary for SPP coherence, since
any spectral correlations would lead to a more coherent
field. It is useful to focus on the longitudinal coherence
at the surface (z1 = z2 = 0), where the field is strongest.
We let x1 = 0 mark the SPP excitation point and de-
note x2 = x. Figure 2 illustrates the equal-time (τ = 0)
degree of longitudinal coherence γ(x) at an Ag-air inter-
face for SPP fields with Gaussian (wavelength) spectra of
different widths. The coherence length, which naturally
decreases as the spectral width is increased, is seen to ex-
tend over several wavelengths while still only a fraction
of the SPP propagation distance. For ultrawide spectra,
such as thermal radiation, the coherence length is on the
order of the mean wavelength. Allowing nonzero correla-
tions in W (ω1, ω2), as in the Gaussian Schell-model [10],
renders the SPP field more coherent and nonstationary.
At high levels of spectral correlations the SPPs become
pulses that propagate at the metal surface.
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Fig. 2: (Colour online) Equal-time degree of longitudinal
coherence γ(x) for a Gaussian SPP field of central SPP wave-
length λ0 = 632.8 nm at an Ag-air interface, when the spec-
tral width (standard deviation Δλ in wavelength) is varied:
Δλ = 10 nm (solid blue curve), Δλ = 20 nm (dashed blue
curve), and Δλ = 40 nm (dotted blue curve). The dash-dotted
red curve depicts the normalized SPP intensity I0(x)/I0(0) for
λ0. The relative permittivity of Ag is obtained from the em-
pirical data of [31].
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Fig. 3: (Colour online) Equal-time degree of longitudinal co-
herence γ(x) (solid blue curve) for an SPP field excited by
two independent Kr lasers of wavelengths λ1 = 676.4 nm and
λ2 = 647.1 nm at an Ag-air interface. The dashed and dotted
curves show the normalized intensities I(x)/I(0) for the spec-
tral SPP components of λ1 and λ2, respectively. The relative
permittivity of Ag is obtained from the empirical data of [31].

As an illustration of strong SPP coherence modulation,
we consider an SPP field composed of two mutually un-
correlated spectral components. If the intensities of the
two constituents are equal at the excitation point r1 = 0,
eqs. (6)–(9) and (19) yield for the degree of coherence

γ(r, τ) =
1√
2

√
1 + p

cos(Δk′ · r − Δωτ)
cosh(Δk′′ · r) , (20)

where r = r2, Δω = ω2 − ω1, Δk′ = k′(ω2) − k′(ω1),
Δk′′ = k′′(ω2) − k′′(ω1), and p = |p̂∗(ω1) · p̂(ω2)|2. The
degree of coherence in eq. (20) is illustrated in fig. 3 for
z = τ = 0, i.e., γ(r, τ) = γ(x), when the SPP con-
stituents are generated by two independent Kr lasers at
an Ag-air interface. We emphasize that the oscillation of
γ(x), caused by the cosine term, does not result from con-
ventional wave beating, since the two SPP constituents
are uncorrelated and hence do not interfere. Instead, the
oscillation originates from the fact that at certain peri-
odic distances the electromagnetic SPP field is statisti-
cally similar [34,35] to the total field at the excitation
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point. At the locations where γ(x) is high, or low, the
SPP would interact with nanoparticles in the vicinity of
the surface in a coherent, or incoherent, manner. This
could be used, for instance, for controlled excitation of
random sets of molecules or quantum dots [25].

Polarization. – Regarding polarization, the electric
field in eq. (1) has two components that lie in the same
(xz) plane as the wave vectors of the single-mode SPPs.
Although this situation differs physically from an ordinary
light beam, for which the electric field is perpendicular
to the propagation direction, for the analysis of the SPP
polarization state we may nonetheless employ the con-
ventional formalism of two-component beam fields [21].
Hence, in our case, the degree of polarization of the poly-
chromatic SPP field is defined through [10]

P (r, t) =

√
2
trJ2(r, t)
tr2J(r, t)

− 1, (21)

satisfying 0 ≤ P (r, t) ≤ 1. In this way eq. (21) charac-
terizes the polarization state of the SPP electric field in
the plane of plasmon propagation at a single space-time
point. For the narrowband case it readily follows from
eqs. (17) and (21) that P (r, t) = 1, indicating that nar-
rowband SPP fields are completely polarized everywhere,
regardless of the spectral correlations. This result is sup-
ported by the physical fact that a monochromatic SPP is
fully (elliptically) polarized.

Quite surprisingly, also the broadband SPP fields re-
main highly polarized. This finding, which might appear
counterintuitive, can be understood as follows. Suppose
that, at a given reference point, the polychromatic SPP
field has a broad bandwidth with the individual spectral
modes being uncorrelated and roughly of equal intensity.
These choices are expected to give the fundamental lower
limit for the polarization degree of the broadband SPP
field, since any spectral correlations or spectral density
variations would lead to a more polarized field. But, even
though the equal-intensity SPP constituents are spectrally
fully uncorrelated, their polarization vectors in eq. (3) are
very similar, at least within the optical regime, render-
ing the polychromatic SPP field strongly polarized. On
propagation away from the reference point the spectrum
narrows down, since the modes pertaining to the high-
frequency end of the spectrum decay faster than those in
the lower spectral range [22], making the SPP field even
more polarized.

Conclusions. – In summary, by utilizing rigorous
electromagnetic coherence theory, we have formulated a
framework for polychromatic, partially coherent, multi-
component SPP fields excited at a metal-air interface. The
general space-time coherence matrix, valid for both sta-
tionary and nonstationary SPP fields of arbitrary spectra
and spectral correlations, was analytically derived. It was
particularly demonstrated how spectrally partially corre-
lated SPPs can be excited with partially coherent beams

500 650 725575

3.2
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0.0
800
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)| 

Fig. 4: (Colour online) Magnitude of the slab transmission co-
efficient T (λ, d) under the phase matching condition of eq. (13)
for an Ag film as a function of the wavelength λ, when the
slab thickness is varied: d = 100 nm (solid green curve),
d = 115 nm (dashed green curve), and d = 130 nm (dotted
green curve). The shaded region represents the SPP band-
width 595 nm < λ < 706 nm, achieved by paraxial illumination
with a spread angle Δθ = 5◦ (see discussion below eq. (16)).
The refractive index of the glass prism is taken to be n = 1.5,
whereas the relative permittivity of Ag is obtained from the
empirical data of [31].

in the customary Kretschmann configuration. This is the
key result of plasmon coherence engineering: with knowl-
edge of the metal’s dispersion our method allows exact
determination of the spatio-spectral coherence of the ex-
citing light to generate polychromatic SPPs with desired
coherence properties. We further showed that in the nar-
rowband limit the SPP field is virtually propagation in-
variant and strictly polarized and that even broadband
SPPs, while widely coherence tunable, remain strongly
polarized. The polychromatic SPP fields of controlled
coherence thus provide versatile tools for various future
surface-photonic applications.
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Appendix: coupling efficiency. – The coupling be-
tween the angular spectrum mode of the illumination,
E(kX , ω), with kX satisfying eq. (14), and the ensuing SPP
spectral component, E(ω), is given by the transmission co-
efficient of the slab [36]

T (ω, d) =
t12(ω)t23(ω)eikz2(ω)d

1 + r12(ω)r23(ω)e2ikz2(ω)d
. (A.1)

Here t12(ω) and r12(ω) (t23(ω) and r23(ω)) are, respec-
tively, the Fresnel transmission and reflection coefficients
for the glass-metal (metal-air) interface, kz2(ω) is the nor-
mal wave vector component in the metal, and d is the
thickness of the slab. Any variation in T (ω, d) may, how-
ever, be compensated by changing E(kX , ω), since only
their product matters in plasmon engineering.
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As an illustration, fig. 4 shows the behavior of |T (λ, d)|
as a function of the wavelength λ for Ag slabs of differ-
ent thicknesses. It is seen that |T (λ, d)| varies relatively
smoothly over a broad spectral range. In particular,
within the 100 nm bandwidth centered at λ = 650 nm
(shaded area in fig. 4), corresponding to illumination
with a paraxial polychromatic beam of angular spread
Δθ = 5◦, discussed below eq. (16), the coupling efficiency
is spectrally quite flat regardless of d. As the slab thick-
ness increases, the coupling strength decreases, due to
absorption, and becomes practically independent of the
wavelength.
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[29] Norrman A., Setälä T. and Friberg A. T., Phys. Rev.
A, 90 (2014) 053849.
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